MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2lp Structured version   Unicode version

Theorem en2lp 8063
Description: No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
en2lp  |-  -.  ( A  e.  B  /\  B  e.  A )

Proof of Theorem en2lp
StepHypRef Expression
1 zfregfr 8062 . . 3  |-  _E  Fr  _V
2 efrn2lp 4805 . . 3  |-  ( (  _E  Fr  _V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  -.  ( A  e.  B  /\  B  e.  A )
)
31, 2mpan 668 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
4 elex 3068 . . . 4  |-  ( A  e.  B  ->  A  e.  _V )
5 elex 3068 . . . 4  |-  ( B  e.  A  ->  B  e.  _V )
64, 5anim12i 564 . . 3  |-  ( ( A  e.  B  /\  B  e.  A )  ->  ( A  e.  _V  /\  B  e.  _V )
)
76con3i 135 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
83, 7pm2.61i 164 1  |-  -.  ( A  e.  B  /\  B  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 367    e. wcel 1842   _Vcvv 3059    _E cep 4732    Fr wfr 4779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630  ax-reg 8052
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-br 4396  df-opab 4454  df-eprel 4734  df-fr 4782
This theorem is referenced by:  preleq  8067  suc11reg  8069  axunndlem1  9002  axacndlem5  9019  tratrb  36327  tratrbVD  36692
  Copyright terms: Public domain W3C validator