MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2 Structured version   Unicode version

Theorem en2 7660
Description: A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en2  |-  ( A 
~~  2o  ->  E. x E. y  A  =  { x ,  y } )
Distinct variable group:    x, y, A

Proof of Theorem en2
StepHypRef Expression
1 1onn 7189 . 2  |-  1o  e.  om
2 df-2o 7032 . 2  |-  2o  =  suc  1o
3 en1 7487 . . 3  |-  ( ( A  \  { x } )  ~~  1o  <->  E. y ( A  \  { x } )  =  { y } )
43biimpi 194 . 2  |-  ( ( A  \  { x } )  ~~  1o  ->  E. y ( A 
\  { x }
)  =  { y } )
5 df-pr 3989 . . . 4  |-  { x ,  y }  =  ( { x }  u.  { y } )
65enp1ilem 7658 . . 3  |-  ( x  e.  A  ->  (
( A  \  {
x } )  =  { y }  ->  A  =  { x ,  y } ) )
76eximdv 1677 . 2  |-  ( x  e.  A  ->  ( E. y ( A  \  { x } )  =  { y }  ->  E. y  A  =  { x ,  y } ) )
81, 2, 4, 7enp1i 7659 1  |-  ( A 
~~  2o  ->  E. x E. y  A  =  { x ,  y } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370   E.wex 1587    e. wcel 1758    \ cdif 3434   {csn 3986   {cpr 3988   class class class wbr 4401   1oc1o 7024   2oc2o 7025    ~~ cen 7418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-om 6588  df-1o 7031  df-2o 7032  df-er 7212  df-en 7422  df-fin 7425
This theorem is referenced by:  en3  7661  hash2pr  12297  pmtrrn2  16086
  Copyright terms: Public domain W3C validator