MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1 Structured version   Unicode version

Theorem en1 7594
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Distinct variable group:    x, A

Proof of Theorem en1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df1o2 7154 . . . . 5  |-  1o  =  { (/) }
21breq2i 4461 . . . 4  |-  ( A 
~~  1o  <->  A  ~~  { (/) } )
3 bren 7537 . . . 4  |-  ( A 
~~  { (/) }  <->  E. f 
f : A -1-1-onto-> { (/) } )
42, 3bitri 249 . . 3  |-  ( A 
~~  1o  <->  E. f  f : A -1-1-onto-> { (/) } )
5 f1ocnv 5834 . . . . 5  |-  ( f : A -1-1-onto-> { (/) }  ->  `' f : { (/) } -1-1-onto-> A )
6 f1ofo 5829 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } -onto-> A )
7 forn 5804 . . . . . . 7  |-  ( `' f : { (/) }
-onto-> A  ->  ran  `' f  =  A )
86, 7syl 16 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  A )
9 f1of 5822 . . . . . . . . 9  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } --> A )
10 0ex 4583 . . . . . . . . . . 11  |-  (/)  e.  _V
1110fsn2 6072 . . . . . . . . . 10  |-  ( `' f : { (/) } --> A  <->  ( ( `' f `  (/) )  e.  A  /\  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } ) )
1211simprbi 464 . . . . . . . . 9  |-  ( `' f : { (/) } --> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
139, 12syl 16 . . . . . . . 8  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
1413rneqd 5236 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  ran  { <. (/) ,  ( `' f `  (/) ) >. } )
1510rnsnop 5495 . . . . . . 7  |-  ran  { <.
(/) ,  ( `' f `  (/) ) >. }  =  { ( `' f `  (/) ) }
1614, 15syl6eq 2524 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  { ( `' f `
 (/) ) } )
178, 16eqtr3d 2510 . . . . 5  |-  ( `' f : { (/) } -1-1-onto-> A  ->  A  =  {
( `' f `  (/) ) } )
18 fvex 5882 . . . . . 6  |-  ( `' f `  (/) )  e. 
_V
19 sneq 4043 . . . . . . 7  |-  ( x  =  ( `' f `
 (/) )  ->  { x }  =  { ( `' f `  (/) ) } )
2019eqeq2d 2481 . . . . . 6  |-  ( x  =  ( `' f `
 (/) )  ->  ( A  =  { x } 
<->  A  =  { ( `' f `  (/) ) } ) )
2118, 20spcev 3210 . . . . 5  |-  ( A  =  { ( `' f `  (/) ) }  ->  E. x  A  =  { x } )
225, 17, 213syl 20 . . . 4  |-  ( f : A -1-1-onto-> { (/) }  ->  E. x  A  =  { x } )
2322exlimiv 1698 . . 3  |-  ( E. f  f : A -1-1-onto-> { (/)
}  ->  E. x  A  =  { x } )
244, 23sylbi 195 . 2  |-  ( A 
~~  1o  ->  E. x  A  =  { x } )
25 vex 3121 . . . . 5  |-  x  e. 
_V
2625ensn1 7591 . . . 4  |-  { x }  ~~  1o
27 breq1 4456 . . . 4  |-  ( A  =  { x }  ->  ( A  ~~  1o  <->  { x }  ~~  1o ) )
2826, 27mpbiri 233 . . 3  |-  ( A  =  { x }  ->  A  ~~  1o )
2928exlimiv 1698 . 2  |-  ( E. x  A  =  {
x }  ->  A  ~~  1o )
3024, 29impbii 188 1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1379   E.wex 1596    e. wcel 1767   (/)c0 3790   {csn 4033   <.cop 4039   class class class wbr 4453   `'ccnv 5004   ran crn 5006   -->wf 5590   -onto->wfo 5592   -1-1-onto->wf1o 5593   ` cfv 5594   1oc1o 7135    ~~ cen 7525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-id 4801  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-1o 7142  df-en 7529
This theorem is referenced by:  en1b  7595  reuen1  7596  en2  7768  card1  8361  pm54.43  8393  hash1snb  12459  ufildom1  20295
  Copyright terms: Public domain W3C validator