MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem6 Structured version   Unicode version

Theorem emcllem6 22337
Description: Lemma for emcl 22339. By the previous lemmas,  F and  G must approach a common limit, which is  gamma by definition. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1  |-  F  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  n ) ) )
emcl.2  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
emcl.3  |-  H  =  ( n  e.  NN  |->  ( log `  ( 1  +  ( 1  /  n ) ) ) )
emcl.4  |-  T  =  ( n  e.  NN  |->  ( ( 1  /  n )  -  ( log `  ( 1  +  ( 1  /  n
) ) ) ) )
Assertion
Ref Expression
emcllem6  |-  ( F  ~~> 
gamma  /\  G  ~~>  gamma )
Distinct variable groups:    m, H    m, n, T
Allowed substitution hints:    F( m, n)    G( m, n)    H( n)

Proof of Theorem emcllem6
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 10892 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 10673 . . . . 5  |-  ( T. 
->  1  e.  ZZ )
3 oveq2 6098 . . . . . . . . . 10  |-  ( n  =  k  ->  (
1  /  n )  =  ( 1  / 
k ) )
43oveq2d 6106 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
1  +  ( 1  /  n ) )  =  ( 1  +  ( 1  /  k
) ) )
54fveq2d 5692 . . . . . . . . . 10  |-  ( n  =  k  ->  ( log `  ( 1  +  ( 1  /  n
) ) )  =  ( log `  (
1  +  ( 1  /  k ) ) ) )
63, 5oveq12d 6108 . . . . . . . . 9  |-  ( n  =  k  ->  (
( 1  /  n
)  -  ( log `  ( 1  +  ( 1  /  n ) ) ) )  =  ( ( 1  / 
k )  -  ( log `  ( 1  +  ( 1  /  k
) ) ) ) )
7 emcl.4 . . . . . . . . 9  |-  T  =  ( n  e.  NN  |->  ( ( 1  /  n )  -  ( log `  ( 1  +  ( 1  /  n
) ) ) ) )
8 ovex 6115 . . . . . . . . 9  |-  ( ( 1  /  k )  -  ( log `  (
1  +  ( 1  /  k ) ) ) )  e.  _V
96, 7, 8fvmpt 5771 . . . . . . . 8  |-  ( k  e.  NN  ->  ( T `  k )  =  ( ( 1  /  k )  -  ( log `  ( 1  +  ( 1  / 
k ) ) ) ) )
109adantl 463 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( T `  k )  =  ( ( 1  /  k )  -  ( log `  ( 1  +  ( 1  / 
k ) ) ) ) )
11 nnrecre 10354 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
1211adantl 463 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  k )  e.  RR )
13 1rp 10991 . . . . . . . . . . 11  |-  1  e.  RR+
14 nnrp 10996 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  RR+ )
1514rpreccld 11033 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR+ )
1615adantl 463 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  k )  e.  RR+ )
17 rpaddcl 11007 . . . . . . . . . . 11  |-  ( ( 1  e.  RR+  /\  (
1  /  k )  e.  RR+ )  ->  (
1  +  ( 1  /  k ) )  e.  RR+ )
1813, 16, 17sylancr 658 . . . . . . . . . 10  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  +  ( 1  /  k ) )  e.  RR+ )
1918relogcld 22015 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  ( log `  ( 1  +  ( 1  /  k
) ) )  e.  RR )
2012, 19resubcld 9772 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
( 1  /  k
)  -  ( log `  ( 1  +  ( 1  /  k ) ) ) )  e.  RR )
2120recnd 9408 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( 1  /  k
)  -  ( log `  ( 1  +  ( 1  /  k ) ) ) )  e.  CC )
22 emcl.1 . . . . . . . . . 10  |-  F  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  n ) ) )
23 emcl.2 . . . . . . . . . 10  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
24 emcl.3 . . . . . . . . . 10  |-  H  =  ( n  e.  NN  |->  ( log `  ( 1  +  ( 1  /  n ) ) ) )
2522, 23, 24, 7emcllem5 22336 . . . . . . . . 9  |-  G  =  seq 1 (  +  ,  T )
2622, 23emcllem1 22332 . . . . . . . . . . . 12  |-  ( F : NN --> RR  /\  G : NN --> RR )
2726simpri 459 . . . . . . . . . . 11  |-  G : NN
--> RR
2827a1i 11 . . . . . . . . . 10  |-  ( T. 
->  G : NN --> RR )
2922, 23emcllem2 22333 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  /\  ( G `  k )  <_  ( G `  (
k  +  1 ) ) ) )
3029simprd 460 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  ( G `  k )  <_  ( G `  (
k  +  1 ) ) )
3130adantl 463 . . . . . . . . . 10  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( G `  (
k  +  1 ) ) )
32 1nn 10329 . . . . . . . . . . . 12  |-  1  e.  NN
3326simpli 455 . . . . . . . . . . . . 13  |-  F : NN
--> RR
3433ffvelrni 5839 . . . . . . . . . . . 12  |-  ( 1  e.  NN  ->  ( F `  1 )  e.  RR )
3532, 34ax-mp 5 . . . . . . . . . . 11  |-  ( F `
 1 )  e.  RR
3627ffvelrni 5839 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  ( G `  k )  e.  RR )
3736adantl 463 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
3833ffvelrni 5839 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  ( F `  k )  e.  RR )
3938adantl 463 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
4035a1i 11 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  1 )  e.  RR )
41 fvex 5698 . . . . . . . . . . . . . . . . . . 19  |-  ( log `  ( 1  +  ( 1  /  k ) ) )  e.  _V
425, 24, 41fvmpt 5771 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  ( H `  k )  =  ( log `  (
1  +  ( 1  /  k ) ) ) )
4342adantl 463 . . . . . . . . . . . . . . . . 17  |-  ( ( T.  /\  k  e.  NN )  ->  ( H `  k )  =  ( log `  (
1  +  ( 1  /  k ) ) ) )
4422, 23, 24emcllem3 22334 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  ( H `  k )  =  ( ( F `
 k )  -  ( G `  k ) ) )
4544adantl 463 . . . . . . . . . . . . . . . . 17  |-  ( ( T.  /\  k  e.  NN )  ->  ( H `  k )  =  ( ( F `
 k )  -  ( G `  k ) ) )
4643, 45eqtr3d 2475 . . . . . . . . . . . . . . . 16  |-  ( ( T.  /\  k  e.  NN )  ->  ( log `  ( 1  +  ( 1  /  k
) ) )  =  ( ( F `  k )  -  ( G `  k )
) )
47 1re 9381 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
48 readdcl 9361 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  ( 1  /  k
)  e.  RR )  ->  ( 1  +  ( 1  /  k
) )  e.  RR )
4947, 12, 48sylancr 658 . . . . . . . . . . . . . . . . 17  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  +  ( 1  /  k ) )  e.  RR )
50 ltaddrp 11019 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  ( 1  /  k
)  e.  RR+ )  ->  1  <  ( 1  +  ( 1  / 
k ) ) )
5147, 16, 50sylancr 658 . . . . . . . . . . . . . . . . 17  |-  ( ( T.  /\  k  e.  NN )  ->  1  <  ( 1  +  ( 1  /  k ) ) )
5249, 51rplogcld 22021 . . . . . . . . . . . . . . . 16  |-  ( ( T.  /\  k  e.  NN )  ->  ( log `  ( 1  +  ( 1  /  k
) ) )  e.  RR+ )
5346, 52eqeltrrd 2516 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  k  e.  NN )  ->  (
( F `  k
)  -  ( G `
 k ) )  e.  RR+ )
5453rpge0d 11027 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  k  e.  NN )  ->  0  <_  ( ( F `  k )  -  ( G `  k )
) )
5539, 37subge0d 9925 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  k  e.  NN )  ->  (
0  <_  ( ( F `  k )  -  ( G `  k ) )  <->  ( G `  k )  <_  ( F `  k )
) )
5654, 55mpbid 210 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( F `  k
) )
57 fveq2 5688 . . . . . . . . . . . . . . . 16  |-  ( x  =  1  ->  ( F `  x )  =  ( F ` 
1 ) )
5857breq1d 4299 . . . . . . . . . . . . . . 15  |-  ( x  =  1  ->  (
( F `  x
)  <_  ( F `  1 )  <->  ( F `  1 )  <_ 
( F `  1
) ) )
59 fveq2 5688 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
6059breq1d 4299 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  (
( F `  x
)  <_  ( F `  1 )  <->  ( F `  k )  <_  ( F `  1 )
) )
61 fveq2 5688 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
6261breq1d 4299 . . . . . . . . . . . . . . 15  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  <_  ( F `  1 )  <->  ( F `  ( k  +  1 ) )  <_  ( F `  1 )
) )
6335leidi 9870 . . . . . . . . . . . . . . 15  |-  ( F `
 1 )  <_ 
( F `  1
)
6429simpld 456 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
65 peano2nn 10330 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
6633ffvelrni 5839 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  +  1 )  e.  NN  ->  ( F `  ( k  +  1 ) )  e.  RR )
6765, 66syl 16 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  e.  RR )
6835a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  ( F `  1 )  e.  RR )
69 letr 9464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  (
k  +  1 ) )  e.  RR  /\  ( F `  k )  e.  RR  /\  ( F `  1 )  e.  RR )  ->  (
( ( F `  ( k  +  1 ) )  <_  ( F `  k )  /\  ( F `  k
)  <_  ( F `  1 ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  1 )
) )
7067, 38, 68, 69syl3anc 1213 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
( ( F `  ( k  +  1 ) )  <_  ( F `  k )  /\  ( F `  k
)  <_  ( F `  1 ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  1 )
) )
7164, 70mpand 670 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( F `  k
)  <_  ( F `  1 )  -> 
( F `  (
k  +  1 ) )  <_  ( F `  1 ) ) )
7258, 60, 62, 60, 63, 71nnind 10336 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  ( F `  k )  <_  ( F `  1
) )
7372adantl 463 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  <_  ( F `  1
) )
7437, 39, 40, 56, 73letrd 9524 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( F `  1
) )
7574ralrimiva 2797 . . . . . . . . . . 11  |-  ( T. 
->  A. k  e.  NN  ( G `  k )  <_  ( F ` 
1 ) )
76 breq2 4293 . . . . . . . . . . . . 13  |-  ( x  =  ( F ` 
1 )  ->  (
( G `  k
)  <_  x  <->  ( G `  k )  <_  ( F `  1 )
) )
7776ralbidv 2733 . . . . . . . . . . . 12  |-  ( x  =  ( F ` 
1 )  ->  ( A. k  e.  NN  ( G `  k )  <_  x  <->  A. k  e.  NN  ( G `  k )  <_  ( F `  1 )
) )
7877rspcev 3070 . . . . . . . . . . 11  |-  ( ( ( F `  1
)  e.  RR  /\  A. k  e.  NN  ( G `  k )  <_  ( F `  1
) )  ->  E. x  e.  RR  A. k  e.  NN  ( G `  k )  <_  x
)
7935, 75, 78sylancr 658 . . . . . . . . . 10  |-  ( T. 
->  E. x  e.  RR  A. k  e.  NN  ( G `  k )  <_  x )
801, 2, 28, 31, 79climsup 13143 . . . . . . . . 9  |-  ( T. 
->  G  ~~>  sup ( ran  G ,  RR ,  <  ) )
8125, 80syl5eqbrr 4323 . . . . . . . 8  |-  ( T. 
->  seq 1 (  +  ,  T )  ~~>  sup ( ran  G ,  RR ,  <  ) )
82 climrel 12966 . . . . . . . . 9  |-  Rel  ~~>
8382releldmi 5072 . . . . . . . 8  |-  (  seq 1 (  +  ,  T )  ~~>  sup ( ran  G ,  RR ,  <  )  ->  seq 1
(  +  ,  T
)  e.  dom  ~~>  )
8481, 83syl 16 . . . . . . 7  |-  ( T. 
->  seq 1 (  +  ,  T )  e. 
dom 
~~>  )
851, 2, 10, 21, 84isumclim2 13221 . . . . . 6  |-  ( T. 
->  seq 1 (  +  ,  T )  ~~>  sum_ k  e.  NN  ( ( 1  /  k )  -  ( log `  ( 1  +  ( 1  / 
k ) ) ) ) )
86 df-em 22329 . . . . . 6  |-  gamma  =  sum_ k  e.  NN  (
( 1  /  k
)  -  ( log `  ( 1  +  ( 1  /  k ) ) ) )
8785, 25, 863brtr4g 4321 . . . . 5  |-  ( T. 
->  G  ~~>  gamma )
88 nnex 10324 . . . . . . . 8  |-  NN  e.  _V
8988mptex 5945 . . . . . . 7  |-  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  n ) ) )  e.  _V
9022, 89eqeltri 2511 . . . . . 6  |-  F  e. 
_V
9190a1i 11 . . . . 5  |-  ( T. 
->  F  e.  _V )
9222, 23, 24emcllem4 22335 . . . . . 6  |-  H  ~~>  0
9392a1i 11 . . . . 5  |-  ( T. 
->  H  ~~>  0 )
9437recnd 9408 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  CC )
9539, 37resubcld 9772 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( F `  k
)  -  ( G `
 k ) )  e.  RR )
9645, 95eqeltrd 2515 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( H `  k )  e.  RR )
9796recnd 9408 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  ( H `  k )  e.  CC )
9845oveq2d 6106 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
( G `  k
)  +  ( H `
 k ) )  =  ( ( G `
 k )  +  ( ( F `  k )  -  ( G `  k )
) ) )
9939recnd 9408 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  e.  CC )
10094, 99pncan3d 9718 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
( G `  k
)  +  ( ( F `  k )  -  ( G `  k ) ) )  =  ( F `  k ) )
10198, 100eqtr2d 2474 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  =  ( ( G `
 k )  +  ( H `  k
) ) )
1021, 2, 87, 91, 93, 94, 97, 101climadd 13105 . . . 4  |-  ( T. 
->  F  ~~>  ( gamma  +  0 ) )
10387trud 1373 . . . . . 6  |-  G  ~~>  gamma
104 climcl 12973 . . . . . 6  |-  ( G  ~~> 
gamma  ->  gamma  e.  CC )
105103, 104ax-mp 5 . . . . 5  |-  gamma  e.  CC
106105addid1i 9552 . . . 4  |-  ( gamma  +  0 )  = 
gamma
107102, 106syl6breq 4328 . . 3  |-  ( T. 
->  F  ~~>  gamma )
108107trud 1373 . 2  |-  F  ~~>  gamma
109108, 103pm3.2i 452 1  |-  ( F  ~~> 
gamma  /\  G  ~~>  gamma )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364   T. wtru 1365    e. wcel 1761   A.wral 2713   E.wrex 2714   _Vcvv 2970   class class class wbr 4289    e. cmpt 4347   dom cdm 4836   ran crn 4837   -->wf 5411   ` cfv 5415  (class class class)co 6090   supcsup 7686   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    < clt 9414    <_ cle 9415    - cmin 9591    / cdiv 9989   NNcn 10318   RR+crp 10987   ...cfz 11433    seqcseq 11802    ~~> cli 12958   sum_csu 13159   logclog 21949   gammacem 22328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-sum 13160  df-ef 13349  df-sin 13351  df-cos 13352  df-pi 13354  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17709  df-xmet 17710  df-met 17711  df-bl 17712  df-mopn 17713  df-fbas 17714  df-fg 17715  df-cnfld 17719  df-top 18403  df-bases 18405  df-topon 18406  df-topsp 18407  df-cld 18523  df-ntr 18524  df-cls 18525  df-nei 18602  df-lp 18640  df-perf 18641  df-cn 18731  df-cnp 18732  df-haus 18819  df-tx 19035  df-hmeo 19228  df-fil 19319  df-fm 19411  df-flim 19412  df-flf 19413  df-xms 19795  df-ms 19796  df-tms 19797  df-cncf 20354  df-limc 21241  df-dv 21242  df-log 21951  df-em 22329
This theorem is referenced by:  emcllem7  22338
  Copyright terms: Public domain W3C validator