MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem2 Structured version   Unicode version

Theorem emcllem2 23047
Description: Lemma for emcl 23053. 
F is increasing, and  G is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1  |-  F  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  n ) ) )
emcl.2  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
Assertion
Ref Expression
emcllem2  |-  ( N  e.  NN  ->  (
( F `  ( N  +  1 ) )  <_  ( F `  N )  /\  ( G `  N )  <_  ( G `  ( N  +  1 ) ) ) )
Distinct variable group:    m, n, N
Allowed substitution hints:    F( m, n)    G( m, n)

Proof of Theorem emcllem2
StepHypRef Expression
1 peano2nn 10537 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
21nnrecred 10570 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  e.  RR )
31nnrpd 11244 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR+ )
43relogcld 22729 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( N  + 
1 ) )  e.  RR )
5 nnrp 11218 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR+ )
65relogcld 22729 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  N )  e.  RR )
74, 6resubcld 9976 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  ( N  +  1 ) )  -  ( log `  N ) )  e.  RR )
8 fzfid 12039 . . . . . . 7  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
9 elfznn 11703 . . . . . . . . 9  |-  ( m  e.  ( 1 ... N )  ->  m  e.  NN )
109adantl 466 . . . . . . . 8  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... N ) )  ->  m  e.  NN )
1110nnrecred 10570 . . . . . . 7  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... N ) )  ->  ( 1  /  m )  e.  RR )
128, 11fsumrecl 13505 . . . . . 6  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... N
) ( 1  /  m )  e.  RR )
133rpreccld 11255 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  e.  RR+ )
1413rpge0d 11249 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <_  ( 1  /  ( N  +  1 ) ) )
15 1div1e1 10226 . . . . . . . . . . . 12  |-  ( 1  /  1 )  =  1
16 1re 9584 . . . . . . . . . . . . . 14  |-  1  e.  RR
17 ltaddrp 11241 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  N  e.  RR+ )  -> 
1  <  ( 1  +  N ) )
1816, 5, 17sylancr 663 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  1  <  ( 1  +  N
) )
19 ax-1cn 9539 . . . . . . . . . . . . . 14  |-  1  e.  CC
20 nncn 10533 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
21 addcom 9754 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  N  e.  CC )  ->  ( 1  +  N
)  =  ( N  +  1 ) )
2219, 20, 21sylancr 663 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
1  +  N )  =  ( N  + 
1 ) )
2318, 22breqtrd 4464 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  1  <  ( N  +  1 ) )
2415, 23syl5eqbr 4473 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  1 )  <  ( N  + 
1 ) )
251nnred 10540 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
261nngt0d 10568 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
27 0lt1 10064 . . . . . . . . . . . . 13  |-  0  <  1
28 ltrec1 10421 . . . . . . . . . . . . 13  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( ( N  +  1 )  e.  RR  /\  0  < 
( N  +  1 ) ) )  -> 
( ( 1  / 
1 )  <  ( N  +  1 )  <-> 
( 1  /  ( N  +  1 ) )  <  1 ) )
2916, 27, 28mpanl12 682 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  e.  RR  /\  0  <  ( N  + 
1 ) )  -> 
( ( 1  / 
1 )  <  ( N  +  1 )  <-> 
( 1  /  ( N  +  1 ) )  <  1 ) )
3025, 26, 29syl2anc 661 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  1
)  <  ( N  +  1 )  <->  ( 1  /  ( N  + 
1 ) )  <  1 ) )
3124, 30mpbid 210 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  <  1 )
322, 14, 31eflegeo 13706 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( exp `  ( 1  / 
( N  +  1 ) ) )  <_ 
( 1  /  (
1  -  ( 1  /  ( N  + 
1 ) ) ) ) )
3325recnd 9611 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
34 nnne0 10557 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  =/=  0 )
351nnne0d 10569 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
3620, 33, 34, 35recdivd 10326 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( N  /  ( N  + 
1 ) ) )  =  ( ( N  +  1 )  /  N ) )
37 1cnd 9601 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  1  e.  CC )
3833, 37, 33, 35divsubdird 10348 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  -  1 )  /  ( N  +  1 ) )  =  ( ( ( N  +  1 )  /  ( N  + 
1 ) )  -  ( 1  /  ( N  +  1 ) ) ) )
39 pncan 9815 . . . . . . . . . . . . . 14  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
4020, 19, 39sylancl 662 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
4140oveq1d 6290 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  -  1 )  /  ( N  +  1 ) )  =  ( N  / 
( N  +  1 ) ) )
4233, 35dividd 10307 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  ( N  +  1 ) )  =  1 )
4342oveq1d 6290 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  ( N  +  1 ) )  -  ( 1  /  ( N  + 
1 ) ) )  =  ( 1  -  ( 1  /  ( N  +  1 ) ) ) )
4438, 41, 433eqtr3rd 2510 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  -  ( 1  /  ( N  + 
1 ) ) )  =  ( N  / 
( N  +  1 ) ) )
4544oveq2d 6291 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( 1  -  ( 1  / 
( N  +  1 ) ) ) )  =  ( 1  / 
( N  /  ( N  +  1 ) ) ) )
463, 5rpdivcld 11262 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  RR+ )
4746reeflogd 22730 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( exp `  ( log `  (
( N  +  1 )  /  N ) ) )  =  ( ( N  +  1 )  /  N ) )
4836, 45, 473eqtr4d 2511 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  /  ( 1  -  ( 1  / 
( N  +  1 ) ) ) )  =  ( exp `  ( log `  ( ( N  +  1 )  /  N ) ) ) )
4932, 48breqtrd 4464 . . . . . . . 8  |-  ( N  e.  NN  ->  ( exp `  ( 1  / 
( N  +  1 ) ) )  <_ 
( exp `  ( log `  ( ( N  +  1 )  /  N ) ) ) )
503, 5relogdivd 22732 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  =  ( ( log `  ( N  +  1 ) )  -  ( log `  N ) ) )
5150, 7eqeltrd 2548 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  e.  RR )
52 efle 13703 . . . . . . . . 9  |-  ( ( ( 1  /  ( N  +  1 ) )  e.  RR  /\  ( log `  ( ( N  +  1 )  /  N ) )  e.  RR )  -> 
( ( 1  / 
( N  +  1 ) )  <_  ( log `  ( ( N  +  1 )  /  N ) )  <->  ( exp `  ( 1  /  ( N  +  1 ) ) )  <_  ( exp `  ( log `  (
( N  +  1 )  /  N ) ) ) ) )
532, 51, 52syl2anc 661 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  /  ( N  +  1 ) )  <_  ( log `  ( ( N  + 
1 )  /  N
) )  <->  ( exp `  ( 1  /  ( N  +  1 ) ) )  <_  ( exp `  ( log `  (
( N  +  1 )  /  N ) ) ) ) )
5449, 53mpbird 232 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  <_  ( log `  (
( N  +  1 )  /  N ) ) )
5554, 50breqtrd 4464 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  <_  ( ( log `  ( N  +  1 ) )  -  ( log `  N ) ) )
562, 7, 12, 55leadd2dd 10156 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  +  ( 1  / 
( N  +  1 ) ) )  <_ 
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  +  ( ( log `  ( N  +  1 ) )  -  ( log `  N
) ) ) )
57 id 22 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN )
58 nnuz 11106 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
5957, 58syl6eleq 2558 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
60 elfznn 11703 . . . . . . . . 9  |-  ( m  e.  ( 1 ... ( N  +  1 ) )  ->  m  e.  NN )
6160adantl 466 . . . . . . . 8  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  m  e.  NN )
6261nnrecred 10570 . . . . . . 7  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( 1  /  m )  e.  RR )
6362recnd 9611 . . . . . 6  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( 1  /  m )  e.  CC )
64 oveq2 6283 . . . . . 6  |-  ( m  =  ( N  + 
1 )  ->  (
1  /  m )  =  ( 1  / 
( N  +  1 ) ) )
6559, 63, 64fsump1 13520 . . . . 5  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  +  ( 1  / 
( N  +  1 ) ) ) )
664recnd 9611 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( N  + 
1 ) )  e.  CC )
6712recnd 9611 . . . . . 6  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... N
) ( 1  /  m )  e.  CC )
686recnd 9611 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  N )  e.  CC )
6966, 67, 68addsub12d 9942 . . . . 5  |-  ( N  e.  NN  ->  (
( log `  ( N  +  1 ) )  +  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) ) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  +  ( ( log `  ( N  +  1 ) )  -  ( log `  N ) ) ) )
7056, 65, 693brtr4d 4470 . . . 4  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  <_  (
( log `  ( N  +  1 ) )  +  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) ) ) )
71 fzfid 12039 . . . . . 6  |-  ( N  e.  NN  ->  (
1 ... ( N  + 
1 ) )  e. 
Fin )
7271, 62fsumrecl 13505 . . . . 5  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  e.  RR )
7312, 6resubcld 9976 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N
) )  e.  RR )
7472, 4, 73lesubadd2d 10140 . . . 4  |-  ( N  e.  NN  ->  (
( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  <_ 
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  N ) )  <->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  <_  (
( log `  ( N  +  1 ) )  +  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) ) ) ) )
7570, 74mpbird 232 . . 3  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N
) ) )
76 oveq2 6283 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
1 ... n )  =  ( 1 ... ( N  +  1 ) ) )
7776sumeq1d 13472 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  sum_ m  e.  ( 1 ... n
) ( 1  /  m )  =  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m ) )
78 fveq2 5857 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  ( log `  n )  =  ( log `  ( N  +  1 ) ) )
7977, 78oveq12d 6293 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  n
) )  =  (
sum_ m  e.  (
1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) ) )
80 emcl.1 . . . . 5  |-  F  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  n ) ) )
81 ovex 6300 . . . . 5  |-  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  e.  _V
8279, 80, 81fvmpt 5941 . . . 4  |-  ( ( N  +  1 )  e.  NN  ->  ( F `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) ) )
831, 82syl 16 . . 3  |-  ( N  e.  NN  ->  ( F `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) ) )
84 oveq2 6283 . . . . . 6  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
8584sumeq1d 13472 . . . . 5  |-  ( n  =  N  ->  sum_ m  e.  ( 1 ... n
) ( 1  /  m )  =  sum_ m  e.  ( 1 ... N ) ( 1  /  m ) )
86 fveq2 5857 . . . . 5  |-  ( n  =  N  ->  ( log `  n )  =  ( log `  N
) )
8785, 86oveq12d 6293 . . . 4  |-  ( n  =  N  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  n
) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  -  ( log `  N
) ) )
88 ovex 6300 . . . 4  |-  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) )  e.  _V
8987, 80, 88fvmpt 5941 . . 3  |-  ( N  e.  NN  ->  ( F `  N )  =  ( sum_ m  e.  ( 1 ... N
) ( 1  /  m )  -  ( log `  N ) ) )
9075, 83, 893brtr4d 4470 . 2  |-  ( N  e.  NN  ->  ( F `  ( N  +  1 ) )  <_  ( F `  N ) )
91 peano2nn 10537 . . . . . . . . . 10  |-  ( ( N  +  1 )  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  NN )
921, 91syl 16 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  NN )
9392nnrpd 11244 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  RR+ )
9493relogcld 22729 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  +  1 ) )  e.  RR )
9594, 4resubcld 9976 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  +  1 ) )  -  ( log `  ( N  +  1 ) ) )  e.  RR )
96 logdifbnd 23044 . . . . . . 7  |-  ( ( N  +  1 )  e.  RR+  ->  ( ( log `  ( ( N  +  1 )  +  1 ) )  -  ( log `  ( N  +  1 ) ) )  <_  (
1  /  ( N  +  1 ) ) )
973, 96syl 16 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  +  1 ) )  -  ( log `  ( N  +  1 ) ) )  <_ 
( 1  /  ( N  +  1 ) ) )
9895, 2, 12, 97leadd2dd 10156 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  +  ( ( log `  ( ( N  + 
1 )  +  1 ) )  -  ( log `  ( N  + 
1 ) ) ) )  <_  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  +  ( 1  /  ( N  +  1 ) ) ) )
9994recnd 9611 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  +  1 ) )  e.  CC )
10067, 66, 99subadd23d 9941 . . . . 5  |-  ( N  e.  NN  ->  (
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  +  ( log `  (
( N  +  1 )  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  +  ( ( log `  ( ( N  + 
1 )  +  1 ) )  -  ( log `  ( N  + 
1 ) ) ) ) )
10198, 100, 653brtr4d 4470 . . . 4  |-  ( N  e.  NN  ->  (
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  +  ( log `  (
( N  +  1 )  +  1 ) ) )  <_  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m ) )
10212, 4resubcld 9976 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  e.  RR )
103 leaddsub 10017 . . . . 5  |-  ( ( ( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  e.  RR  /\  ( log `  ( ( N  + 
1 )  +  1 ) )  e.  RR  /\ 
sum_ m  e.  (
1 ... ( N  + 
1 ) ) ( 1  /  m )  e.  RR )  -> 
( ( ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  +  ( log `  ( ( N  + 
1 )  +  1 ) ) )  <_  sum_ m  e.  ( 1 ... ( N  + 
1 ) ) ( 1  /  m )  <-> 
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  <_ 
( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m
)  -  ( log `  ( ( N  + 
1 )  +  1 ) ) ) ) )
104102, 94, 72, 103syl3anc 1223 . . . 4  |-  ( N  e.  NN  ->  (
( ( sum_ m  e.  ( 1 ... N
) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) )  +  ( log `  (
( N  +  1 )  +  1 ) ) )  <_  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  <->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) ) ) )
105101, 104mpbid 210 . . 3  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  (
( N  +  1 )  +  1 ) ) ) )
106 oveq1 6282 . . . . . 6  |-  ( n  =  N  ->  (
n  +  1 )  =  ( N  + 
1 ) )
107106fveq2d 5861 . . . . 5  |-  ( n  =  N  ->  ( log `  ( n  + 
1 ) )  =  ( log `  ( N  +  1 ) ) )
10885, 107oveq12d 6293 . . . 4  |-  ( n  =  N  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  (
n  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) ) )
109 emcl.2 . . . 4  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
110 ovex 6300 . . . 4  |-  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  e.  _V
111108, 109, 110fvmpt 5941 . . 3  |-  ( N  e.  NN  ->  ( G `  N )  =  ( sum_ m  e.  ( 1 ... N
) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) ) )
112 oveq1 6282 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
n  +  1 )  =  ( ( N  +  1 )  +  1 ) )
113112fveq2d 5861 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  ( log `  ( n  + 
1 ) )  =  ( log `  (
( N  +  1 )  +  1 ) ) )
11477, 113oveq12d 6293 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  (
n  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  (
( N  +  1 )  +  1 ) ) ) )
115 ovex 6300 . . . . 5  |-  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) )  e.  _V
116114, 109, 115fvmpt 5941 . . . 4  |-  ( ( N  +  1 )  e.  NN  ->  ( G `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) ) )
1171, 116syl 16 . . 3  |-  ( N  e.  NN  ->  ( G `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) ) )
118105, 111, 1173brtr4d 4470 . 2  |-  ( N  e.  NN  ->  ( G `  N )  <_  ( G `  ( N  +  1 ) ) )
11990, 118jca 532 1  |-  ( N  e.  NN  ->  (
( F `  ( N  +  1 ) )  <_  ( F `  N )  /\  ( G `  N )  <_  ( G `  ( N  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   class class class wbr 4440    |-> cmpt 4498   ` cfv 5579  (class class class)co 6275   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    < clt 9617    <_ cle 9618    - cmin 9794    / cdiv 10195   NNcn 10525   ZZ>=cuz 11071   RR+crp 11209   ...cfz 11661   sum_csu 13457   expce 13648   logclog 22663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ioc 11523  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-fac 12309  df-bc 12336  df-hash 12361  df-shft 12850  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-limsup 13243  df-clim 13260  df-rlim 13261  df-sum 13458  df-ef 13654  df-sin 13656  df-cos 13657  df-pi 13659  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-mulg 15854  df-cntz 16143  df-cmn 16589  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-fbas 18180  df-fg 18181  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-lp 19396  df-perf 19397  df-cn 19487  df-cnp 19488  df-haus 19575  df-tx 19791  df-hmeo 19984  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-xms 20551  df-ms 20552  df-tms 20553  df-cncf 21110  df-limc 21998  df-dv 21999  df-log 22665
This theorem is referenced by:  emcllem6  23051  emcllem7  23052
  Copyright terms: Public domain W3C validator