MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem2 Structured version   Unicode version

Theorem emcllem2 22508
Description: Lemma for emcl 22514. 
F is increasing, and  G is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1  |-  F  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  n ) ) )
emcl.2  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
Assertion
Ref Expression
emcllem2  |-  ( N  e.  NN  ->  (
( F `  ( N  +  1 ) )  <_  ( F `  N )  /\  ( G `  N )  <_  ( G `  ( N  +  1 ) ) ) )
Distinct variable group:    m, n, N
Allowed substitution hints:    F( m, n)    G( m, n)

Proof of Theorem emcllem2
StepHypRef Expression
1 peano2nn 10437 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
21nnrecred 10470 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  e.  RR )
31nnrpd 11129 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR+ )
43relogcld 22190 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( N  + 
1 ) )  e.  RR )
5 nnrp 11103 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR+ )
65relogcld 22190 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  N )  e.  RR )
74, 6resubcld 9879 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  ( N  +  1 ) )  -  ( log `  N ) )  e.  RR )
8 fzfid 11898 . . . . . . 7  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
9 elfznn 11581 . . . . . . . . 9  |-  ( m  e.  ( 1 ... N )  ->  m  e.  NN )
109adantl 466 . . . . . . . 8  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... N ) )  ->  m  e.  NN )
1110nnrecred 10470 . . . . . . 7  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... N ) )  ->  ( 1  /  m )  e.  RR )
128, 11fsumrecl 13315 . . . . . 6  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... N
) ( 1  /  m )  e.  RR )
133rpreccld 11140 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  e.  RR+ )
1413rpge0d 11134 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <_  ( 1  /  ( N  +  1 ) ) )
15 1div1e1 10127 . . . . . . . . . . . 12  |-  ( 1  /  1 )  =  1
16 1re 9488 . . . . . . . . . . . . . 14  |-  1  e.  RR
17 ltaddrp 11126 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  N  e.  RR+ )  -> 
1  <  ( 1  +  N ) )
1816, 5, 17sylancr 663 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  1  <  ( 1  +  N
) )
19 ax-1cn 9443 . . . . . . . . . . . . . 14  |-  1  e.  CC
20 nncn 10433 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
21 addcom 9658 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  N  e.  CC )  ->  ( 1  +  N
)  =  ( N  +  1 ) )
2219, 20, 21sylancr 663 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
1  +  N )  =  ( N  + 
1 ) )
2318, 22breqtrd 4416 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  1  <  ( N  +  1 ) )
2415, 23syl5eqbr 4425 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  1 )  <  ( N  + 
1 ) )
251nnred 10440 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
261nngt0d 10468 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
27 0lt1 9965 . . . . . . . . . . . . 13  |-  0  <  1
28 ltrec1 10322 . . . . . . . . . . . . 13  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( ( N  +  1 )  e.  RR  /\  0  < 
( N  +  1 ) ) )  -> 
( ( 1  / 
1 )  <  ( N  +  1 )  <-> 
( 1  /  ( N  +  1 ) )  <  1 ) )
2916, 27, 28mpanl12 682 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  e.  RR  /\  0  <  ( N  + 
1 ) )  -> 
( ( 1  / 
1 )  <  ( N  +  1 )  <-> 
( 1  /  ( N  +  1 ) )  <  1 ) )
3025, 26, 29syl2anc 661 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  1
)  <  ( N  +  1 )  <->  ( 1  /  ( N  + 
1 ) )  <  1 ) )
3124, 30mpbid 210 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  <  1 )
322, 14, 31eflegeo 13509 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( exp `  ( 1  / 
( N  +  1 ) ) )  <_ 
( 1  /  (
1  -  ( 1  /  ( N  + 
1 ) ) ) ) )
3325recnd 9515 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
34 nnne0 10457 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  =/=  0 )
351nnne0d 10469 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
3620, 33, 34, 35recdivd 10227 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( N  /  ( N  + 
1 ) ) )  =  ( ( N  +  1 )  /  N ) )
37 1cnd 9505 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  1  e.  CC )
3833, 37, 33, 35divsubdird 10249 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  -  1 )  /  ( N  +  1 ) )  =  ( ( ( N  +  1 )  /  ( N  + 
1 ) )  -  ( 1  /  ( N  +  1 ) ) ) )
39 pncan 9719 . . . . . . . . . . . . . 14  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
4020, 19, 39sylancl 662 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
4140oveq1d 6207 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  -  1 )  /  ( N  +  1 ) )  =  ( N  / 
( N  +  1 ) ) )
4233, 35dividd 10208 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  ( N  +  1 ) )  =  1 )
4342oveq1d 6207 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  ( N  +  1 ) )  -  ( 1  /  ( N  + 
1 ) ) )  =  ( 1  -  ( 1  /  ( N  +  1 ) ) ) )
4438, 41, 433eqtr3rd 2501 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  -  ( 1  /  ( N  + 
1 ) ) )  =  ( N  / 
( N  +  1 ) ) )
4544oveq2d 6208 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( 1  -  ( 1  / 
( N  +  1 ) ) ) )  =  ( 1  / 
( N  /  ( N  +  1 ) ) ) )
463, 5rpdivcld 11147 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  RR+ )
4746reeflogd 22191 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( exp `  ( log `  (
( N  +  1 )  /  N ) ) )  =  ( ( N  +  1 )  /  N ) )
4836, 45, 473eqtr4d 2502 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  /  ( 1  -  ( 1  / 
( N  +  1 ) ) ) )  =  ( exp `  ( log `  ( ( N  +  1 )  /  N ) ) ) )
4932, 48breqtrd 4416 . . . . . . . 8  |-  ( N  e.  NN  ->  ( exp `  ( 1  / 
( N  +  1 ) ) )  <_ 
( exp `  ( log `  ( ( N  +  1 )  /  N ) ) ) )
503, 5relogdivd 22193 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  =  ( ( log `  ( N  +  1 ) )  -  ( log `  N ) ) )
5150, 7eqeltrd 2539 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  e.  RR )
52 efle 13506 . . . . . . . . 9  |-  ( ( ( 1  /  ( N  +  1 ) )  e.  RR  /\  ( log `  ( ( N  +  1 )  /  N ) )  e.  RR )  -> 
( ( 1  / 
( N  +  1 ) )  <_  ( log `  ( ( N  +  1 )  /  N ) )  <->  ( exp `  ( 1  /  ( N  +  1 ) ) )  <_  ( exp `  ( log `  (
( N  +  1 )  /  N ) ) ) ) )
532, 51, 52syl2anc 661 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  /  ( N  +  1 ) )  <_  ( log `  ( ( N  + 
1 )  /  N
) )  <->  ( exp `  ( 1  /  ( N  +  1 ) ) )  <_  ( exp `  ( log `  (
( N  +  1 )  /  N ) ) ) ) )
5449, 53mpbird 232 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  <_  ( log `  (
( N  +  1 )  /  N ) ) )
5554, 50breqtrd 4416 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( N  +  1 ) )  <_  ( ( log `  ( N  +  1 ) )  -  ( log `  N ) ) )
562, 7, 12, 55leadd2dd 10057 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  +  ( 1  / 
( N  +  1 ) ) )  <_ 
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  +  ( ( log `  ( N  +  1 ) )  -  ( log `  N
) ) ) )
57 id 22 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN )
58 nnuz 10999 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
5957, 58syl6eleq 2549 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
60 elfznn 11581 . . . . . . . . 9  |-  ( m  e.  ( 1 ... ( N  +  1 ) )  ->  m  e.  NN )
6160adantl 466 . . . . . . . 8  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  m  e.  NN )
6261nnrecred 10470 . . . . . . 7  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( 1  /  m )  e.  RR )
6362recnd 9515 . . . . . 6  |-  ( ( N  e.  NN  /\  m  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( 1  /  m )  e.  CC )
64 oveq2 6200 . . . . . 6  |-  ( m  =  ( N  + 
1 )  ->  (
1  /  m )  =  ( 1  / 
( N  +  1 ) ) )
6559, 63, 64fsump1 13327 . . . . 5  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  +  ( 1  / 
( N  +  1 ) ) ) )
664recnd 9515 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( N  + 
1 ) )  e.  CC )
6712recnd 9515 . . . . . 6  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... N
) ( 1  /  m )  e.  CC )
686recnd 9515 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  N )  e.  CC )
6966, 67, 68addsub12d 9845 . . . . 5  |-  ( N  e.  NN  ->  (
( log `  ( N  +  1 ) )  +  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) ) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  +  ( ( log `  ( N  +  1 ) )  -  ( log `  N ) ) ) )
7056, 65, 693brtr4d 4422 . . . 4  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  <_  (
( log `  ( N  +  1 ) )  +  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) ) ) )
71 fzfid 11898 . . . . . 6  |-  ( N  e.  NN  ->  (
1 ... ( N  + 
1 ) )  e. 
Fin )
7271, 62fsumrecl 13315 . . . . 5  |-  ( N  e.  NN  ->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  e.  RR )
7312, 6resubcld 9879 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N
) )  e.  RR )
7472, 4, 73lesubadd2d 10041 . . . 4  |-  ( N  e.  NN  ->  (
( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  <_ 
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  N ) )  <->  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  <_  (
( log `  ( N  +  1 ) )  +  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) ) ) ) )
7570, 74mpbird 232 . . 3  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N
) ) )
76 oveq2 6200 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
1 ... n )  =  ( 1 ... ( N  +  1 ) ) )
7776sumeq1d 13282 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  sum_ m  e.  ( 1 ... n
) ( 1  /  m )  =  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m ) )
78 fveq2 5791 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  ( log `  n )  =  ( log `  ( N  +  1 ) ) )
7977, 78oveq12d 6210 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  n
) )  =  (
sum_ m  e.  (
1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) ) )
80 emcl.1 . . . . 5  |-  F  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  n ) ) )
81 ovex 6217 . . . . 5  |-  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  e.  _V
8279, 80, 81fvmpt 5875 . . . 4  |-  ( ( N  +  1 )  e.  NN  ->  ( F `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) ) )
831, 82syl 16 . . 3  |-  ( N  e.  NN  ->  ( F `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) ) )
84 oveq2 6200 . . . . . 6  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
8584sumeq1d 13282 . . . . 5  |-  ( n  =  N  ->  sum_ m  e.  ( 1 ... n
) ( 1  /  m )  =  sum_ m  e.  ( 1 ... N ) ( 1  /  m ) )
86 fveq2 5791 . . . . 5  |-  ( n  =  N  ->  ( log `  n )  =  ( log `  N
) )
8785, 86oveq12d 6210 . . . 4  |-  ( n  =  N  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  n
) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  -  ( log `  N
) ) )
88 ovex 6217 . . . 4  |-  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  N ) )  e.  _V
8987, 80, 88fvmpt 5875 . . 3  |-  ( N  e.  NN  ->  ( F `  N )  =  ( sum_ m  e.  ( 1 ... N
) ( 1  /  m )  -  ( log `  N ) ) )
9075, 83, 893brtr4d 4422 . 2  |-  ( N  e.  NN  ->  ( F `  ( N  +  1 ) )  <_  ( F `  N ) )
91 peano2nn 10437 . . . . . . . . . 10  |-  ( ( N  +  1 )  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  NN )
921, 91syl 16 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  NN )
9392nnrpd 11129 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  RR+ )
9493relogcld 22190 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  +  1 ) )  e.  RR )
9594, 4resubcld 9879 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  +  1 ) )  -  ( log `  ( N  +  1 ) ) )  e.  RR )
96 logdifbnd 22505 . . . . . . 7  |-  ( ( N  +  1 )  e.  RR+  ->  ( ( log `  ( ( N  +  1 )  +  1 ) )  -  ( log `  ( N  +  1 ) ) )  <_  (
1  /  ( N  +  1 ) ) )
973, 96syl 16 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  +  1 ) )  -  ( log `  ( N  +  1 ) ) )  <_ 
( 1  /  ( N  +  1 ) ) )
9895, 2, 12, 97leadd2dd 10057 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  +  ( ( log `  ( ( N  + 
1 )  +  1 ) )  -  ( log `  ( N  + 
1 ) ) ) )  <_  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  +  ( 1  /  ( N  +  1 ) ) ) )
9994recnd 9515 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  +  1 ) )  e.  CC )
10067, 66, 99subadd23d 9844 . . . . 5  |-  ( N  e.  NN  ->  (
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  +  ( log `  (
( N  +  1 )  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  +  ( ( log `  ( ( N  + 
1 )  +  1 ) )  -  ( log `  ( N  + 
1 ) ) ) ) )
10198, 100, 653brtr4d 4422 . . . 4  |-  ( N  e.  NN  ->  (
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  +  ( log `  (
( N  +  1 )  +  1 ) ) )  <_  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m ) )
10212, 4resubcld 9879 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  e.  RR )
103 leaddsub 9918 . . . . 5  |-  ( ( ( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  e.  RR  /\  ( log `  ( ( N  + 
1 )  +  1 ) )  e.  RR  /\ 
sum_ m  e.  (
1 ... ( N  + 
1 ) ) ( 1  /  m )  e.  RR )  -> 
( ( ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  +  ( log `  ( ( N  + 
1 )  +  1 ) ) )  <_  sum_ m  e.  ( 1 ... ( N  + 
1 ) ) ( 1  /  m )  <-> 
( sum_ m  e.  ( 1 ... N ) ( 1  /  m
)  -  ( log `  ( N  +  1 ) ) )  <_ 
( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m
)  -  ( log `  ( ( N  + 
1 )  +  1 ) ) ) ) )
104102, 94, 72, 103syl3anc 1219 . . . 4  |-  ( N  e.  NN  ->  (
( ( sum_ m  e.  ( 1 ... N
) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) )  +  ( log `  (
( N  +  1 )  +  1 ) ) )  <_  sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  <->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) ) ) )
105101, 104mpbid 210 . . 3  |-  ( N  e.  NN  ->  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  (
( N  +  1 )  +  1 ) ) ) )
106 oveq1 6199 . . . . . 6  |-  ( n  =  N  ->  (
n  +  1 )  =  ( N  + 
1 ) )
107106fveq2d 5795 . . . . 5  |-  ( n  =  N  ->  ( log `  ( n  + 
1 ) )  =  ( log `  ( N  +  1 ) ) )
10885, 107oveq12d 6210 . . . 4  |-  ( n  =  N  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  (
n  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) ) )
109 emcl.2 . . . 4  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
110 ovex 6217 . . . 4  |-  ( sum_ m  e.  ( 1 ... N ) ( 1  /  m )  -  ( log `  ( N  +  1 ) ) )  e.  _V
111108, 109, 110fvmpt 5875 . . 3  |-  ( N  e.  NN  ->  ( G `  N )  =  ( sum_ m  e.  ( 1 ... N
) ( 1  /  m )  -  ( log `  ( N  + 
1 ) ) ) )
112 oveq1 6199 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
n  +  1 )  =  ( ( N  +  1 )  +  1 ) )
113112fveq2d 5795 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  ( log `  ( n  + 
1 ) )  =  ( log `  (
( N  +  1 )  +  1 ) ) )
11477, 113oveq12d 6210 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  (
n  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... ( N  + 
1 ) ) ( 1  /  m )  -  ( log `  (
( N  +  1 )  +  1 ) ) ) )
115 ovex 6217 . . . . 5  |-  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) )  e.  _V
116114, 109, 115fvmpt 5875 . . . 4  |-  ( ( N  +  1 )  e.  NN  ->  ( G `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) ) )
1171, 116syl 16 . . 3  |-  ( N  e.  NN  ->  ( G `  ( N  +  1 ) )  =  ( sum_ m  e.  ( 1 ... ( N  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( N  +  1 )  +  1 ) ) ) )
118105, 111, 1173brtr4d 4422 . 2  |-  ( N  e.  NN  ->  ( G `  N )  <_  ( G `  ( N  +  1 ) ) )
11990, 118jca 532 1  |-  ( N  e.  NN  ->  (
( F `  ( N  +  1 ) )  <_  ( F `  N )  /\  ( G `  N )  <_  ( G `  ( N  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   class class class wbr 4392    |-> cmpt 4450   ` cfv 5518  (class class class)co 6192   CCcc 9383   RRcr 9384   0cc0 9385   1c1 9386    + caddc 9388    < clt 9521    <_ cle 9522    - cmin 9698    / cdiv 10096   NNcn 10425   ZZ>=cuz 10964   RR+crp 11094   ...cfz 11540   sum_csu 13267   expce 13451   logclog 22124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-pre-sup 9463  ax-addf 9464  ax-mulf 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-iin 4274  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-of 6422  df-om 6579  df-1st 6679  df-2nd 6680  df-supp 6793  df-recs 6934  df-rdg 6968  df-1o 7022  df-2o 7023  df-oadd 7026  df-er 7203  df-map 7318  df-pm 7319  df-ixp 7366  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-fsupp 7724  df-fi 7764  df-sup 7794  df-oi 7827  df-card 8212  df-cda 8440  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-nn 10426  df-2 10483  df-3 10484  df-4 10485  df-5 10486  df-6 10487  df-7 10488  df-8 10489  df-9 10490  df-10 10491  df-n0 10683  df-z 10750  df-dec 10859  df-uz 10965  df-q 11057  df-rp 11095  df-xneg 11192  df-xadd 11193  df-xmul 11194  df-ioo 11407  df-ioc 11408  df-ico 11409  df-icc 11410  df-fz 11541  df-fzo 11652  df-fl 11745  df-mod 11812  df-seq 11910  df-exp 11969  df-fac 12155  df-bc 12182  df-hash 12207  df-shft 12660  df-cj 12692  df-re 12693  df-im 12694  df-sqr 12828  df-abs 12829  df-limsup 13053  df-clim 13070  df-rlim 13071  df-sum 13268  df-ef 13457  df-sin 13459  df-cos 13460  df-pi 13462  df-struct 14280  df-ndx 14281  df-slot 14282  df-base 14283  df-sets 14284  df-ress 14285  df-plusg 14355  df-mulr 14356  df-starv 14357  df-sca 14358  df-vsca 14359  df-ip 14360  df-tset 14361  df-ple 14362  df-ds 14364  df-unif 14365  df-hom 14366  df-cco 14367  df-rest 14465  df-topn 14466  df-0g 14484  df-gsum 14485  df-topgen 14486  df-pt 14487  df-prds 14490  df-xrs 14544  df-qtop 14549  df-imas 14550  df-xps 14552  df-mre 14628  df-mrc 14629  df-acs 14631  df-mnd 15519  df-submnd 15569  df-mulg 15652  df-cntz 15939  df-cmn 16385  df-psmet 17920  df-xmet 17921  df-met 17922  df-bl 17923  df-mopn 17924  df-fbas 17925  df-fg 17926  df-cnfld 17930  df-top 18621  df-bases 18623  df-topon 18624  df-topsp 18625  df-cld 18741  df-ntr 18742  df-cls 18743  df-nei 18820  df-lp 18858  df-perf 18859  df-cn 18949  df-cnp 18950  df-haus 19037  df-tx 19253  df-hmeo 19446  df-fil 19537  df-fm 19629  df-flim 19630  df-flf 19631  df-xms 20013  df-ms 20014  df-tms 20015  df-cncf 20572  df-limc 21459  df-dv 21460  df-log 22126
This theorem is referenced by:  emcllem6  22512  emcllem7  22513
  Copyright terms: Public domain W3C validator