MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elznn0 Structured version   Unicode version

Theorem elznn0 10903
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elznn0  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )

Proof of Theorem elznn0
StepHypRef Expression
1 elz 10890 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 elnn0 10822 . . . . . 6  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
32a1i 11 . . . . 5  |-  ( N  e.  RR  ->  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) ) )
4 elnn0 10822 . . . . . 6  |-  ( -u N  e.  NN0  <->  ( -u N  e.  NN  \/  -u N  =  0 ) )
5 recn 9580 . . . . . . . . 9  |-  ( N  e.  RR  ->  N  e.  CC )
6 0cn 9586 . . . . . . . . 9  |-  0  e.  CC
7 negcon1 9877 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  0  e.  CC )  ->  ( -u N  =  0  <->  -u 0  =  N ) )
85, 6, 7sylancl 666 . . . . . . . 8  |-  ( N  e.  RR  ->  ( -u N  =  0  <->  -u 0  =  N ) )
9 neg0 9871 . . . . . . . . . 10  |-  -u 0  =  0
109eqeq1i 2433 . . . . . . . . 9  |-  ( -u
0  =  N  <->  0  =  N )
11 eqcom 2435 . . . . . . . . 9  |-  ( 0  =  N  <->  N  = 
0 )
1210, 11bitri 252 . . . . . . . 8  |-  ( -u
0  =  N  <->  N  = 
0 )
138, 12syl6bb 264 . . . . . . 7  |-  ( N  e.  RR  ->  ( -u N  =  0  <->  N  =  0 ) )
1413orbi2d 706 . . . . . 6  |-  ( N  e.  RR  ->  (
( -u N  e.  NN  \/  -u N  =  0 )  <->  ( -u N  e.  NN  \/  N  =  0 ) ) )
154, 14syl5bb 260 . . . . 5  |-  ( N  e.  RR  ->  ( -u N  e.  NN0  <->  ( -u N  e.  NN  \/  N  =  0 ) ) )
163, 15orbi12d 714 . . . 4  |-  ( N  e.  RR  ->  (
( N  e.  NN0  \/  -u N  e.  NN0 ) 
<->  ( ( N  e.  NN  \/  N  =  0 )  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
17 3orass 985 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  =  0  \/  ( N  e.  NN  \/  -u N  e.  NN ) ) )
18 orcom 388 . . . . 5  |-  ( ( N  =  0  \/  ( N  e.  NN  \/  -u N  e.  NN ) )  <->  ( ( N  e.  NN  \/  -u N  e.  NN )  \/  N  =  0 ) )
19 orordir 533 . . . . 5  |-  ( ( ( N  e.  NN  \/  -u N  e.  NN )  \/  N  = 
0 )  <->  ( ( N  e.  NN  \/  N  =  0 )  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
2017, 18, 193bitrri 275 . . . 4  |-  ( ( ( N  e.  NN  \/  N  =  0
)  \/  ( -u N  e.  NN  \/  N  =  0 ) )  <->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
2116, 20syl6rbb 265 . . 3  |-  ( N  e.  RR  ->  (
( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) 
<->  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
2221pm5.32i 641 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
231, 22bitri 252 1  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    \/ wo 369    /\ wa 370    \/ w3o 981    = wceq 1437    e. wcel 1872   CCcc 9488   RRcr 9489   0cc0 9490   -ucneg 9812   NNcn 10560   NN0cn0 10820   ZZcz 10888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-po 4717  df-so 4718  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-pnf 9628  df-mnf 9629  df-ltxr 9631  df-sub 9813  df-neg 9814  df-n0 10821  df-z 10889
This theorem is referenced by:  elz2  10905  zmulcl  10936  expnegz  12256  expaddzlem  12265  odd2np1  14308  mulgz  16722  mulgdirlem  16725  mulgdir  16726  mulgass  16731  mulgdi  17410  cxpmul2z  23578  gxneg  25936  gxadd  25945  gxmul  25948  rexzrexnn0  35559  pell1234qrdich  35620  pell14qrexpcl  35626  pell14qrdich  35628  rmxnn  35714  jm2.19lem4  35760
  Copyright terms: Public domain W3C validator