MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp6 Structured version   Unicode version

Theorem elxp6 6808
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 6720. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
elxp6  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )

Proof of Theorem elxp6
StepHypRef Expression
1 elxp4 6720 . 2  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
2 1stval 6778 . . . . 5  |-  ( 1st `  A )  =  U. dom  { A }
3 2ndval 6779 . . . . 5  |-  ( 2nd `  A )  =  U. ran  { A }
42, 3opeq12i 4213 . . . 4  |-  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  =  <. U. dom  { A } ,  U. ran  { A } >.
54eqeq2i 2480 . . 3  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  <->  A  =  <. U. dom  { A } ,  U. ran  { A } >. )
62eleq1i 2539 . . . 4  |-  ( ( 1st `  A )  e.  B  <->  U. dom  { A }  e.  B
)
73eleq1i 2539 . . . 4  |-  ( ( 2nd `  A )  e.  C  <->  U. ran  { A }  e.  C
)
86, 7anbi12i 697 . . 3  |-  ( ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C )  <->  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) )
95, 8anbi12i 697 . 2  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
101, 9bitr4i 252 1  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   {csn 4022   <.cop 4028   U.cuni 4240    X. cxp 4992   dom cdm 4994   ran crn 4995   ` cfv 5581   1stc1st 6774   2ndc2nd 6775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-iota 5544  df-fun 5583  df-fv 5589  df-1st 6776  df-2nd 6777
This theorem is referenced by:  elxp7  6809  eqopi  6810  1st2nd2  6813  r0weon  8381  qredeu  14098  qnumdencl  14122  tx1cn  19840  tx2cn  19841  txhaus  19878  psmetxrge0  20547  xppreima  27147  ofpreima2  27168  1stmbfm  27859  2ndmbfm  27860  oddpwdcv  27922
  Copyright terms: Public domain W3C validator