MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp5 Structured version   Unicode version

Theorem elxp5 6718
Description: Membership in a Cartesian product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 6717 when the double intersection does not create class existence problems (caused by int0 4285). (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
elxp5  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. |^| |^| A ,  U. ran  { A } >.  /\  ( |^| |^| A  e.  B  /\  U. ran  { A }  e.  C
) ) )

Proof of Theorem elxp5
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5005 . 2  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
2 sneq 4026 . . . . . . . . . . . 12  |-  ( A  =  <. x ,  y
>.  ->  { A }  =  { <. x ,  y
>. } )
32rneqd 5219 . . . . . . . . . . 11  |-  ( A  =  <. x ,  y
>.  ->  ran  { A }  =  ran  { <. x ,  y >. } )
43unieqd 4245 . . . . . . . . . 10  |-  ( A  =  <. x ,  y
>.  ->  U. ran  { A }  =  U. ran  { <. x ,  y >. } )
5 vex 3109 . . . . . . . . . . 11  |-  x  e. 
_V
6 vex 3109 . . . . . . . . . . 11  |-  y  e. 
_V
75, 6op2nda 5476 . . . . . . . . . 10  |-  U. ran  {
<. x ,  y >. }  =  y
84, 7syl6req 2512 . . . . . . . . 9  |-  ( A  =  <. x ,  y
>.  ->  y  =  U. ran  { A } )
98pm4.71ri 631 . . . . . . . 8  |-  ( A  =  <. x ,  y
>. 
<->  ( y  =  U. ran  { A }  /\  A  =  <. x ,  y >. ) )
109anbi1i 693 . . . . . . 7  |-  ( ( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  ( ( y  =  U. ran  { A }  /\  A  = 
<. x ,  y >.
)  /\  ( x  e.  B  /\  y  e.  C ) ) )
11 anass 647 . . . . . . 7  |-  ( ( ( y  =  U. ran  { A }  /\  A  =  <. x ,  y >. )  /\  (
x  e.  B  /\  y  e.  C )
)  <->  ( y  = 
U. ran  { A }  /\  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) ) )
1210, 11bitri 249 . . . . . 6  |-  ( ( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  ( y  = 
U. ran  { A }  /\  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) ) )
1312exbii 1672 . . . . 5  |-  ( E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) )  <->  E. y
( y  =  U. ran  { A }  /\  ( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) ) )
14 snex 4678 . . . . . . . 8  |-  { A }  e.  _V
1514rnex 6707 . . . . . . 7  |-  ran  { A }  e.  _V
1615uniex 6569 . . . . . 6  |-  U. ran  { A }  e.  _V
17 opeq2 4204 . . . . . . . 8  |-  ( y  =  U. ran  { A }  ->  <. x ,  y >.  =  <. x ,  U. ran  { A } >. )
1817eqeq2d 2468 . . . . . . 7  |-  ( y  =  U. ran  { A }  ->  ( A  =  <. x ,  y
>. 
<->  A  =  <. x ,  U. ran  { A } >. ) )
19 eleq1 2526 . . . . . . . 8  |-  ( y  =  U. ran  { A }  ->  ( y  e.  C  <->  U. ran  { A }  e.  C
) )
2019anbi2d 701 . . . . . . 7  |-  ( y  =  U. ran  { A }  ->  ( ( x  e.  B  /\  y  e.  C )  <->  ( x  e.  B  /\  U.
ran  { A }  e.  C ) ) )
2118, 20anbi12d 708 . . . . . 6  |-  ( y  =  U. ran  { A }  ->  ( ( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  ( A  = 
<. x ,  U. ran  { A } >.  /\  (
x  e.  B  /\  U.
ran  { A }  e.  C ) ) ) )
2216, 21ceqsexv 3143 . . . . 5  |-  ( E. y ( y  = 
U. ran  { A }  /\  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )  <->  ( A  =  <. x ,  U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C )
) )
2313, 22bitri 249 . . . 4  |-  ( E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) )  <->  ( A  =  <. x ,  U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C )
) )
24 inteq 4274 . . . . . . . 8  |-  ( A  =  <. x ,  U. ran  { A } >.  ->  |^| A  =  |^| <. x ,  U. ran  { A } >. )
2524inteqd 4276 . . . . . . 7  |-  ( A  =  <. x ,  U. ran  { A } >.  ->  |^| |^| A  =  |^| |^|
<. x ,  U. ran  { A } >. )
265, 16op1stb 4707 . . . . . . 7  |-  |^| |^| <. x ,  U. ran  { A } >.  =  x
2725, 26syl6req 2512 . . . . . 6  |-  ( A  =  <. x ,  U. ran  { A } >.  ->  x  =  |^| |^| A
)
2827pm4.71ri 631 . . . . 5  |-  ( A  =  <. x ,  U. ran  { A } >.  <->  (
x  =  |^| |^| A  /\  A  =  <. x ,  U. ran  { A } >. ) )
2928anbi1i 693 . . . 4  |-  ( ( A  =  <. x ,  U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C
) )  <->  ( (
x  =  |^| |^| A  /\  A  =  <. x ,  U. ran  { A } >. )  /\  (
x  e.  B  /\  U.
ran  { A }  e.  C ) ) )
30 anass 647 . . . 4  |-  ( ( ( x  =  |^| |^| A  /\  A  = 
<. x ,  U. ran  { A } >. )  /\  ( x  e.  B  /\  U. ran  { A }  e.  C )
)  <->  ( x  = 
|^| |^| A  /\  ( A  =  <. x , 
U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C
) ) ) )
3123, 29, 303bitri 271 . . 3  |-  ( E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) )  <->  ( x  =  |^| |^| A  /\  ( A  =  <. x , 
U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C
) ) ) )
3231exbii 1672 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  E. x ( x  =  |^| |^| A  /\  ( A  =  <. x ,  U. ran  { A } >.  /\  (
x  e.  B  /\  U.
ran  { A }  e.  C ) ) ) )
33 eqvisset 3114 . . . . 5  |-  ( x  =  |^| |^| A  ->  |^| |^| A  e.  _V )
3433adantr 463 . . . 4  |-  ( ( x  =  |^| |^| A  /\  ( A  =  <. x ,  U. ran  { A } >.  /\  (
x  e.  B  /\  U.
ran  { A }  e.  C ) ) )  ->  |^| |^| A  e.  _V )
3534exlimiv 1727 . . 3  |-  ( E. x ( x  = 
|^| |^| A  /\  ( A  =  <. x , 
U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C
) ) )  ->  |^| |^| A  e.  _V )
36 elex 3115 . . . 4  |-  ( |^| |^| A  e.  B  ->  |^| |^| A  e.  _V )
3736ad2antrl 725 . . 3  |-  ( ( A  =  <. |^| |^| A ,  U. ran  { A } >.  /\  ( |^| |^| A  e.  B  /\  U.
ran  { A }  e.  C ) )  ->  |^| |^| A  e.  _V )
38 opeq1 4203 . . . . . 6  |-  ( x  =  |^| |^| A  -> 
<. x ,  U. ran  { A } >.  =  <. |^|
|^| A ,  U. ran  { A } >. )
3938eqeq2d 2468 . . . . 5  |-  ( x  =  |^| |^| A  ->  ( A  =  <. x ,  U. ran  { A } >.  <->  A  =  <. |^|
|^| A ,  U. ran  { A } >. ) )
40 eleq1 2526 . . . . . 6  |-  ( x  =  |^| |^| A  ->  ( x  e.  B  <->  |^|
|^| A  e.  B
) )
4140anbi1d 702 . . . . 5  |-  ( x  =  |^| |^| A  ->  ( ( x  e.  B  /\  U. ran  { A }  e.  C
)  <->  ( |^| |^| A  e.  B  /\  U. ran  { A }  e.  C
) ) )
4239, 41anbi12d 708 . . . 4  |-  ( x  =  |^| |^| A  ->  ( ( A  = 
<. x ,  U. ran  { A } >.  /\  (
x  e.  B  /\  U.
ran  { A }  e.  C ) )  <->  ( A  =  <. |^| |^| A ,  U. ran  { A } >.  /\  ( |^| |^| A  e.  B  /\  U. ran  { A }  e.  C
) ) ) )
4342ceqsexgv 3229 . . 3  |-  ( |^| |^| A  e.  _V  ->  ( E. x ( x  =  |^| |^| A  /\  ( A  =  <. x ,  U. ran  { A } >.  /\  (
x  e.  B  /\  U.
ran  { A }  e.  C ) ) )  <-> 
( A  =  <. |^|
|^| A ,  U. ran  { A } >.  /\  ( |^| |^| A  e.  B  /\  U. ran  { A }  e.  C
) ) ) )
4435, 37, 43pm5.21nii 351 . 2  |-  ( E. x ( x  = 
|^| |^| A  /\  ( A  =  <. x , 
U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C
) ) )  <->  ( A  =  <. |^| |^| A ,  U. ran  { A } >.  /\  ( |^| |^| A  e.  B  /\  U. ran  { A }  e.  C
) ) )
451, 32, 443bitri 271 1  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. |^| |^| A ,  U. ran  { A } >.  /\  ( |^| |^| A  e.  B  /\  U. ran  { A }  e.  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   _Vcvv 3106   {csn 4016   <.cop 4022   U.cuni 4235   |^|cint 4271    X. cxp 4986   ran crn 4989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-int 4272  df-br 4440  df-opab 4498  df-xp 4994  df-rel 4995  df-cnv 4996  df-dm 4998  df-rn 4999
This theorem is referenced by:  xpnnenOLD  14027
  Copyright terms: Public domain W3C validator