MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp2 Structured version   Unicode version

Theorem elxp2 4872
Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.)
Assertion
Ref Expression
elxp2  |-  ( A  e.  ( B  X.  C )  <->  E. x  e.  B  E. y  e.  C  A  =  <. x ,  y >.
)
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem elxp2
StepHypRef Expression
1 df-rex 2788 . . . 4  |-  ( E. y  e.  C  ( x  e.  B  /\  A  =  <. x ,  y >. )  <->  E. y
( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y >. )
) )
2 r19.42v 2990 . . . 4  |-  ( E. y  e.  C  ( x  e.  B  /\  A  =  <. x ,  y >. )  <->  ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y >.
) )
3 an13 806 . . . . 5  |-  ( ( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y >. )
)  <->  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
43exbii 1714 . . . 4  |-  ( E. y ( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y
>. ) )  <->  E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
51, 2, 43bitr3i 278 . . 3  |-  ( ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y
>. )  <->  E. y ( A  =  <. x ,  y
>.  /\  ( x  e.  B  /\  y  e.  C ) ) )
65exbii 1714 . 2  |-  ( E. x ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y >.
)  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
7 df-rex 2788 . 2  |-  ( E. x  e.  B  E. y  e.  C  A  =  <. x ,  y
>. 
<->  E. x ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y
>. ) )
8 elxp 4871 . 2  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
96, 7, 83bitr4ri 281 1  |-  ( A  e.  ( B  X.  C )  <->  E. x  e.  B  E. y  e.  C  A  =  <. x ,  y >.
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1659    e. wcel 1870   E.wrex 2783   <.cop 4008    X. cxp 4852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-rex 2788  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-opab 4485  df-xp 4860
This theorem is referenced by:  opelxp  4884  xpiundi  4909  xpiundir  4910  ssrel2  4945  el2xptp  6850  f1o2ndf1  6915  xpdom2  7673  tskxpss  9196  nqereu  9353  elreal  9554  efgmnvl  17299  frgpuptinv  17356  frgpup3lem  17362  ucnima  21227  ltgseg  24501  qtophaus  28502  esum2dlem  28752  fourierdlem42  37580
  Copyright terms: Public domain W3C validator