MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp Structured version   Unicode version

Theorem elxp 4878
Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxp  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem elxp
StepHypRef Expression
1 df-xp 4867 . . 3  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
21eleq2i 2507 . 2  |-  ( A  e.  ( B  X.  C )  <->  A  e.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
3 elopab 4618 . 2  |-  ( A  e.  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
42, 3bitri 249 1  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   <.cop 3904   {copab 4370    X. cxp 4859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-v 2995  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-sn 3899  df-pr 3901  df-op 3905  df-opab 4372  df-xp 4867
This theorem is referenced by:  elxp2  4879  0nelxp  4888  0nelelxp  4889  rabxp  4896  elxp3  4910  elvv  4918  elvvv  4919  0xp  4938  xpdifid  5287  dfco2a  5359  elxp4  6543  elxp5  6544  opabex3d  6576  opabex3  6577  xp1st  6627  xp2nd  6628  poxp  6705  soxp  6706  xpsnen  7416  xpcomco  7422  xpassen  7426  dfac5lem1  8314  dfac5lem4  8317  axdc4lem  8645  fsum2dlem  13258  fprod2dlem  27513  dfres3  27591  elima4  27612  brcart  27985  brimg  27990  numclwlk1lem2fo  30714  dibelval3  34888
  Copyright terms: Public domain W3C validator