MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwina Structured version   Unicode version

Theorem elwina 8954
Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
elwina  |-  ( A  e.  InaccW  <->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  E. y  e.  A  x  ~<  y
) )
Distinct variable group:    x, A, y

Proof of Theorem elwina
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 3077 . 2  |-  ( A  e.  InaccW  ->  A  e.  _V )
2 fvex 5799 . . . 4  |-  ( cf `  A )  e.  _V
3 eleq1 2523 . . . 4  |-  ( ( cf `  A )  =  A  ->  (
( cf `  A
)  e.  _V  <->  A  e.  _V ) )
42, 3mpbii 211 . . 3  |-  ( ( cf `  A )  =  A  ->  A  e.  _V )
543ad2ant2 1010 . 2  |-  ( ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  A  e.  _V )
6 neeq1 2729 . . . 4  |-  ( z  =  A  ->  (
z  =/=  (/)  <->  A  =/=  (/) ) )
7 fveq2 5789 . . . . 5  |-  ( z  =  A  ->  ( cf `  z )  =  ( cf `  A
) )
8 eqeq12 2470 . . . . 5  |-  ( ( ( cf `  z
)  =  ( cf `  A )  /\  z  =  A )  ->  (
( cf `  z
)  =  z  <->  ( cf `  A )  =  A ) )
97, 8mpancom 669 . . . 4  |-  ( z  =  A  ->  (
( cf `  z
)  =  z  <->  ( cf `  A )  =  A ) )
10 rexeq 3014 . . . . 5  |-  ( z  =  A  ->  ( E. y  e.  z  x  ~<  y  <->  E. y  e.  A  x  ~<  y ) )
1110raleqbi1dv 3021 . . . 4  |-  ( z  =  A  ->  ( A. x  e.  z  E. y  e.  z  x  ~<  y  <->  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
126, 9, 113anbi123d 1290 . . 3  |-  ( z  =  A  ->  (
( z  =/=  (/)  /\  ( cf `  z )  =  z  /\  A. x  e.  z  E. y  e.  z  x  ~<  y )  <->  ( A  =/=  (/)  /\  ( cf `  A
)  =  A  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) ) )
13 df-wina 8952 . . 3  |-  InaccW  =  { z  |  ( z  =/=  (/)  /\  ( cf `  z )  =  z  /\  A. x  e.  z  E. y  e.  z  x  ~<  y ) }
1412, 13elab2g 3205 . 2  |-  ( A  e.  _V  ->  ( A  e.  InaccW  <->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  E. y  e.  A  x  ~<  y
) ) )
151, 5, 14pm5.21nii 353 1  |-  ( A  e.  InaccW  <->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  E. y  e.  A  x  ~<  y
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   _Vcvv 3068   (/)c0 3735   class class class wbr 4390   ` cfv 5516    ~< csdm 7409   cfccf 8208   InaccWcwina 8950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-nul 4519
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-iota 5479  df-fv 5524  df-wina 8952
This theorem is referenced by:  winaon  8956  inawina  8958  winacard  8960  winainf  8962  winalim2  8964  winafp  8965  gchina  8967
  Copyright terms: Public domain W3C validator