MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzp1m1 Structured version   Visualization version   Unicode version

Theorem eluzp1m1 11189
Description: Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
Assertion
Ref Expression
eluzp1m1  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )

Proof of Theorem eluzp1m1
StepHypRef Expression
1 peano2zm 10987 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
21ad2antrl 735 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( M  +  1 )  <_  N )
)  ->  ( N  -  1 )  e.  ZZ )
3 zre 10948 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  RR )
4 zre 10948 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  RR )
5 1re 9647 . . . . . . . . 9  |-  1  e.  RR
6 leaddsub 10097 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( M  +  1 )  <_  N  <->  M  <_  ( N  -  1 ) ) )
75, 6mp3an2 1354 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  + 
1 )  <_  N  <->  M  <_  ( N  - 
1 ) ) )
83, 4, 7syl2an 480 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  + 
1 )  <_  N  <->  M  <_  ( N  - 
1 ) ) )
98biimpa 487 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  + 
1 )  <_  N
)  ->  M  <_  ( N  -  1 ) )
109anasss 653 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( M  +  1 )  <_  N )
)  ->  M  <_  ( N  -  1 ) )
112, 10jca 535 . . . 4  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( M  +  1 )  <_  N )
)  ->  ( ( N  -  1 )  e.  ZZ  /\  M  <_  ( N  -  1 ) ) )
1211ex 436 . . 3  |-  ( M  e.  ZZ  ->  (
( N  e.  ZZ  /\  ( M  +  1 )  <_  N )  ->  ( ( N  - 
1 )  e.  ZZ  /\  M  <_  ( N  -  1 ) ) ) )
13 peano2z 10985 . . . 4  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
14 eluz1 11170 . . . 4  |-  ( ( M  +  1 )  e.  ZZ  ->  ( N  e.  ( ZZ>= `  ( M  +  1
) )  <->  ( N  e.  ZZ  /\  ( M  +  1 )  <_  N ) ) )
1513, 14syl 17 . . 3  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  ( M  +  1
) )  <->  ( N  e.  ZZ  /\  ( M  +  1 )  <_  N ) ) )
16 eluz1 11170 . . 3  |-  ( M  e.  ZZ  ->  (
( N  -  1 )  e.  ( ZZ>= `  M )  <->  ( ( N  -  1 )  e.  ZZ  /\  M  <_  ( N  -  1 ) ) ) )
1712, 15, 163imtr4d 272 . 2  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  ( M  +  1
) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M
) ) )
1817imp 431 1  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    e. wcel 1889   class class class wbr 4405   ` cfv 5585  (class class class)co 6295   RRcr 9543   1c1 9545    + caddc 9547    <_ cle 9681    - cmin 9865   ZZcz 10944   ZZ>=cuz 11166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-n0 10877  df-z 10945  df-uz 11167
This theorem is referenced by:  peano2uzr  11221  fzosplitsnm1  11995  fzofzp1b  12016  seqm1  12237  monoord  12250  seqf1olem2  12260  seqid  12265  seqz  12268  serf0  13759  fsumm1  13824  telfsumo  13874  fsumparts  13878  isumsplit  13910  climcnds  13921  fprodm1  14033  pockthlem  14861  vdwnnlem2  14958  efgs1b  17398  imasdsf1olem  21400  wwlksubclwwlk  25544  stoweidlem11  37881  smonoord  38728
  Copyright terms: Public domain W3C validator