MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz2b3 Structured version   Unicode version

Theorem eluz2b3 10940
Description: Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
Assertion
Ref Expression
eluz2b3  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )

Proof of Theorem eluz2b3
StepHypRef Expression
1 eluz2b2 10939 . 2  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
2 nngt1ne1 10361 . . 3  |-  ( N  e.  NN  ->  (
1  <  N  <->  N  =/=  1 ) )
32pm5.32i 637 . 2  |-  ( ( N  e.  NN  /\  1  <  N )  <->  ( N  e.  NN  /\  N  =/=  1 ) )
41, 3bitri 249 1  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    e. wcel 1756    =/= wne 2618   class class class wbr 4304   ` cfv 5430   1c1 9295    < clt 9430   NNcn 10334   2c2 10383   ZZ>=cuz 10873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-n0 10592  df-z 10659  df-uz 10874
This theorem is referenced by:  1nuz2  10942  elnn1uz2  10943  isprm2  13783  isprm4  13785  maxprmfct  13811  rpexp  13818  dfphi2  13861  expnprm  13976  prmirredlem  17929  prmirredlemOLD  17932  domnchr  17975  ovolicc1  21011  musum  22543  lgsne0  22684  2sqlem8a  22722  2sqlem8  22723  2sqlem9  22724  ballotlemic  26901  ballotlem1c  26902  signstfveq0a  26989  subfacp1lem3  27082  stoweidlem14  29821  nn01to3  30199  frgrareg  30722  frgraregord013  30723
  Copyright terms: Public domain W3C validator