MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz1 Structured version   Unicode version

Theorem eluz1 11086
Description: Membership in the upper set of integers starting at  M. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
eluz1  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )

Proof of Theorem eluz1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 uzval 11084 . . 3  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  =  { k  e.  ZZ  |  M  <_  k } )
21eleq2d 2524 . 2  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  N  e.  { k  e.  ZZ  |  M  <_  k } ) )
3 breq2 4443 . . 3  |-  ( k  =  N  ->  ( M  <_  k  <->  M  <_  N ) )
43elrab 3254 . 2  |-  ( N  e.  { k  e.  ZZ  |  M  <_ 
k }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
52, 4syl6bb 261 1  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    e. wcel 1823   {crab 2808   class class class wbr 4439   ` cfv 5570    <_ cle 9618   ZZcz 10860   ZZ>=cuz 11082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-cnex 9537  ax-resscn 9538
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fv 5578  df-ov 6273  df-neg 9799  df-z 10861  df-uz 11083
This theorem is referenced by:  eluz2  11088  eluz1i  11089  eluz  11095  uzid  11096  uzss  11102  eluzp1m1  11105  raluz  11130  rexuz  11132  brfi1uzind  12519  algcvga  14295  nndiffz1  27833  fzspl  27835  preduz  29523  lzunuz  30943
  Copyright terms: Public domain W3C validator