MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunirn Structured version   Unicode version

Theorem elunirn 6070
Description: Membership in the union of the range of a function. See elunirnALT 6071 for a shorter proof which uses ax-pow 4571. (Contributed by NM, 24-Sep-2006.)
Assertion
Ref Expression
elunirn  |-  ( Fun 
F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem elunirn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 4195 . 2  |-  ( A  e.  U. ran  F  <->  E. y ( A  e.  y  /\  y  e. 
ran  F ) )
2 funfn 5548 . . . . . . . 8  |-  ( Fun 
F  <->  F  Fn  dom  F )
3 fvelrnb 5841 . . . . . . . 8  |-  ( F  Fn  dom  F  -> 
( y  e.  ran  F  <->  E. x  e.  dom  F ( F `  x
)  =  y ) )
42, 3sylbi 195 . . . . . . 7  |-  ( Fun 
F  ->  ( y  e.  ran  F  <->  E. x  e.  dom  F ( F `
 x )  =  y ) )
54anbi2d 703 . . . . . 6  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  <-> 
( A  e.  y  /\  E. x  e. 
dom  F ( F `
 x )  =  y ) ) )
6 r19.42v 2974 . . . . . 6  |-  ( E. x  e.  dom  F
( A  e.  y  /\  ( F `  x )  =  y )  <->  ( A  e.  y  /\  E. x  e.  dom  F ( F `
 x )  =  y ) )
75, 6syl6bbr 263 . . . . 5  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  <->  E. x  e.  dom  F ( A  e.  y  /\  ( F `  x )  =  y ) ) )
8 eleq2 2524 . . . . . . 7  |-  ( ( F `  x )  =  y  ->  ( A  e.  ( F `  x )  <->  A  e.  y ) )
98biimparc 487 . . . . . 6  |-  ( ( A  e.  y  /\  ( F `  x )  =  y )  ->  A  e.  ( F `  x ) )
109reximi 2922 . . . . 5  |-  ( E. x  e.  dom  F
( A  e.  y  /\  ( F `  x )  =  y )  ->  E. x  e.  dom  F  A  e.  ( F `  x
) )
117, 10syl6bi 228 . . . 4  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  ->  E. x  e.  dom  F  A  e.  ( F `
 x ) ) )
1211exlimdv 1691 . . 3  |-  ( Fun 
F  ->  ( E. y ( A  e.  y  /\  y  e. 
ran  F )  ->  E. x  e.  dom  F  A  e.  ( F `
 x ) ) )
13 fvelrn 5941 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  ran  F
)
1413a1d 25 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( A  e.  ( F `  x )  ->  ( F `  x )  e.  ran  F ) )
1514ancld 553 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( A  e.  ( F `  x )  ->  ( A  e.  ( F `  x
)  /\  ( F `  x )  e.  ran  F ) ) )
16 fvex 5802 . . . . . 6  |-  ( F `
 x )  e. 
_V
17 eleq2 2524 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  ( A  e.  y  <->  A  e.  ( F `  x ) ) )
18 eleq1 2523 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  (
y  e.  ran  F  <->  ( F `  x )  e.  ran  F ) )
1917, 18anbi12d 710 . . . . . 6  |-  ( y  =  ( F `  x )  ->  (
( A  e.  y  /\  y  e.  ran  F )  <->  ( A  e.  ( F `  x
)  /\  ( F `  x )  e.  ran  F ) ) )
2016, 19spcev 3163 . . . . 5  |-  ( ( A  e.  ( F `
 x )  /\  ( F `  x )  e.  ran  F )  ->  E. y ( A  e.  y  /\  y  e.  ran  F ) )
2115, 20syl6 33 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( A  e.  ( F `  x )  ->  E. y ( A  e.  y  /\  y  e.  ran  F ) ) )
2221rexlimdva 2940 . . 3  |-  ( Fun 
F  ->  ( E. x  e.  dom  F  A  e.  ( F `  x
)  ->  E. y
( A  e.  y  /\  y  e.  ran  F ) ) )
2312, 22impbid 191 . 2  |-  ( Fun 
F  ->  ( E. y ( A  e.  y  /\  y  e. 
ran  F )  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
241, 23syl5bb 257 1  |-  ( Fun 
F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   E.wrex 2796   U.cuni 4192   dom cdm 4941   ran crn 4942   Fun wfun 5513    Fn wfn 5514   ` cfv 5519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pr 4632
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-iota 5482  df-fun 5521  df-fn 5522  df-fv 5527
This theorem is referenced by:  fnunirn  6072  fin23lem30  8615  ustn0  19920  elrnust  19924  ustbas  19927  metuvalOLD  20249  metuval  20250  elunirn2  26110  metidval  26455  pstmval  26460  elunirnmbfm  26805
  Copyright terms: Public domain W3C validator