MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltskg Structured version   Unicode version

Theorem eltskg 9023
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
eltskg  |-  ( T  e.  V  ->  ( T  e.  Tarski  <->  ( A. z  e.  T  ( ~P z  C_  T  /\  E. w  e.  T  ~P z  C_  w )  /\  A. z  e.  ~P  T
( z  ~~  T  \/  z  e.  T
) ) ) )
Distinct variable group:    w, T, z
Allowed substitution hints:    V( z, w)

Proof of Theorem eltskg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sseq2 3481 . . . . 5  |-  ( y  =  T  ->  ( ~P z  C_  y  <->  ~P z  C_  T ) )
2 rexeq 3018 . . . . 5  |-  ( y  =  T  ->  ( E. w  e.  y  ~P z  C_  w  <->  E. w  e.  T  ~P z  C_  w ) )
31, 2anbi12d 710 . . . 4  |-  ( y  =  T  ->  (
( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  <->  ( ~P z  C_  T  /\  E. w  e.  T  ~P z  C_  w ) ) )
43raleqbi1dv 3025 . . 3  |-  ( y  =  T  ->  ( A. z  e.  y 
( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  <->  A. z  e.  T  ( ~P z  C_  T  /\  E. w  e.  T  ~P z  C_  w ) ) )
5 pweq 3966 . . . 4  |-  ( y  =  T  ->  ~P y  =  ~P T
)
6 breq2 4399 . . . . 5  |-  ( y  =  T  ->  (
z  ~~  y  <->  z  ~~  T ) )
7 eleq2 2525 . . . . 5  |-  ( y  =  T  ->  (
z  e.  y  <->  z  e.  T ) )
86, 7orbi12d 709 . . . 4  |-  ( y  =  T  ->  (
( z  ~~  y  \/  z  e.  y
)  <->  ( z  ~~  T  \/  z  e.  T ) ) )
95, 8raleqbidv 3031 . . 3  |-  ( y  =  T  ->  ( A. z  e.  ~P  y ( z  ~~  y  \/  z  e.  y )  <->  A. z  e.  ~P  T ( z 
~~  T  \/  z  e.  T ) ) )
104, 9anbi12d 710 . 2  |-  ( y  =  T  ->  (
( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) )  <->  ( A. z  e.  T  ( ~P z  C_  T  /\  E. w  e.  T  ~P z  C_  w )  /\  A. z  e.  ~P  T
( z  ~~  T  \/  z  e.  T
) ) ) )
11 df-tsk 9022 . 2  |-  Tarski  =  {
y  |  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y ( z  ~~  y  \/  z  e.  y ) ) }
1210, 11elab2g 3209 1  |-  ( T  e.  V  ->  ( T  e.  Tarski  <->  ( A. z  e.  T  ( ~P z  C_  T  /\  E. w  e.  T  ~P z  C_  w )  /\  A. z  e.  ~P  T
( z  ~~  T  \/  z  e.  T
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2796   E.wrex 2797    C_ wss 3431   ~Pcpw 3963   class class class wbr 4395    ~~ cen 7412   Tarskictsk 9021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ral 2801  df-rex 2802  df-rab 2805  df-v 3074  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-br 4396  df-tsk 9022
This theorem is referenced by:  eltsk2g  9024  tskpwss  9025  tsken  9027  grothtsk  9108
  Copyright terms: Public domain W3C validator