MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltpg Structured version   Visualization version   Unicode version

Theorem eltpg 4025
Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpg  |-  ( A  e.  V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )

Proof of Theorem eltpg
StepHypRef Expression
1 elprg 3995 . . 3  |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
2 elsncg 4002 . . 3  |-  ( A  e.  V  ->  ( A  e.  { D } 
<->  A  =  D ) )
31, 2orbi12d 721 . 2  |-  ( A  e.  V  ->  (
( A  e.  { B ,  C }  \/  A  e.  { D } )  <->  ( ( A  =  B  \/  A  =  C )  \/  A  =  D
) ) )
4 df-tp 3984 . . . 4  |-  { B ,  C ,  D }  =  ( { B ,  C }  u.  { D } )
54eleq2i 2531 . . 3  |-  ( A  e.  { B ,  C ,  D }  <->  A  e.  ( { B ,  C }  u.  { D } ) )
6 elun 3585 . . 3  |-  ( A  e.  ( { B ,  C }  u.  { D } )  <->  ( A  e.  { B ,  C }  \/  A  e.  { D } ) )
75, 6bitri 257 . 2  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  e.  { B ,  C }  \/  A  e.  { D } ) )
8 df-3or 992 . 2  |-  ( ( A  =  B  \/  A  =  C  \/  A  =  D )  <->  ( ( A  =  B  \/  A  =  C )  \/  A  =  D ) )
93, 7, 83bitr4g 296 1  |-  ( A  e.  V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 374    \/ w3o 990    = wceq 1454    e. wcel 1897    u. cun 3413   {csn 3979   {cpr 3981   {ctp 3983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-v 3058  df-un 3420  df-sn 3980  df-pr 3982  df-tp 3984
This theorem is referenced by:  eldiftp  4026  eltpi  4027  eltp  4028  f1dom3fv3dif  6192  f1dom3el3dif  6193  lcmftp  14657  estrreslem2  16071  1cubr  23816  nb3graprlem1  25227  nb3grprlem1  39503
  Copyright terms: Public domain W3C validator