MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltp Structured version   Unicode version

Theorem eltp 4016
Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
eltp.1  |-  A  e. 
_V
Assertion
Ref Expression
eltp  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
)

Proof of Theorem eltp
StepHypRef Expression
1 eltp.1 . 2  |-  A  e. 
_V
2 eltpg 4013 . 2  |-  ( A  e.  _V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )
31, 2ax-mp 5 1  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    \/ w3o 973    = wceq 1405    e. wcel 1842   _Vcvv 3058   {ctp 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-v 3060  df-un 3418  df-sn 3972  df-pr 3974  df-tp 3976
This theorem is referenced by:  dftp2  4017  tpid1  4084  tpid2  4085  tpid3  4087  tpres  6103  bpoly3  14001  nb3graprlem1  24855  frgra3vlem1  25404  frgra3vlem2  25405  brtp  29949  sltsolem1  30115
  Copyright terms: Public domain W3C validator