MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltp Structured version   Unicode version

Theorem eltp 3916
Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
eltp.1  |-  A  e. 
_V
Assertion
Ref Expression
eltp  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
)

Proof of Theorem eltp
StepHypRef Expression
1 eltp.1 . 2  |-  A  e. 
_V
2 eltpg 3913 . 2  |-  ( A  e.  _V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )
31, 2ax-mp 5 1  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    \/ w3o 964    = wceq 1369    e. wcel 1756   _Vcvv 2967   {ctp 3876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2969  df-un 3328  df-sn 3873  df-pr 3875  df-tp 3877
This theorem is referenced by:  dftp2  3917  tpid1  3983  tpid2  3984  tpid3  3986  nb3graprlem1  23310  brtp  27510  sltsolem1  27760  bpoly3  28152  frgra3vlem1  30545  frgra3vlem2  30546
  Copyright terms: Public domain W3C validator