Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltp Structured version   Visualization version   Unicode version

Theorem eltp 4019
 Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
eltp.1
Assertion
Ref Expression
eltp

Proof of Theorem eltp
StepHypRef Expression
1 eltp.1 . 2
2 eltpg 4016 . 2
31, 2ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wb 188   w3o 985   wceq 1446   wcel 1889  cvv 3047  ctp 3974 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-v 3049  df-un 3411  df-sn 3971  df-pr 3973  df-tp 3975 This theorem is referenced by:  dftp2  4020  tpid1  4088  tpid2  4089  tpid3  4091  tpres  6122  bpoly3  14123  nb3graprlem1  25191  frgra3vlem1  25740  frgra3vlem2  25741  brtp  30401  sltsolem1  30569  nb3grprlem1  39464
 Copyright terms: Public domain W3C validator