MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltp Structured version   Unicode version

Theorem eltp 4032
Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
eltp.1  |-  A  e. 
_V
Assertion
Ref Expression
eltp  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
)

Proof of Theorem eltp
StepHypRef Expression
1 eltp.1 . 2  |-  A  e. 
_V
2 eltpg 4029 . 2  |-  ( A  e.  _V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )
31, 2ax-mp 5 1  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    \/ w3o 964    = wceq 1370    e. wcel 1758   _Vcvv 3078   {ctp 3992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3080  df-un 3444  df-sn 3989  df-pr 3991  df-tp 3993
This theorem is referenced by:  dftp2  4033  tpid1  4099  tpid2  4100  tpid3  4102  nb3graprlem1  23531  brtp  27723  sltsolem1  27973  bpoly3  28365  frgra3vlem1  30760  frgra3vlem2  30761
  Copyright terms: Public domain W3C validator