MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltop3 Structured version   Unicode version

Theorem eltop3 19605
Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
eltop3  |-  ( J  e.  Top  ->  ( A  e.  J  <->  E. x
( x  C_  J  /\  A  =  U. x ) ) )
Distinct variable groups:    x, A    x, J

Proof of Theorem eltop3
StepHypRef Expression
1 tgtop 19602 . . 3  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
21eleq2d 2527 . 2  |-  ( J  e.  Top  ->  ( A  e.  ( topGen `  J )  <->  A  e.  J ) )
3 eltg3 19590 . 2  |-  ( J  e.  Top  ->  ( A  e.  ( topGen `  J )  <->  E. x
( x  C_  J  /\  A  =  U. x ) ) )
42, 3bitr3d 255 1  |-  ( J  e.  Top  ->  ( A  e.  J  <->  E. x
( x  C_  J  /\  A  =  U. x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395   E.wex 1613    e. wcel 1819    C_ wss 3471   U.cuni 4251   ` cfv 5594   topGenctg 14855   Topctop 19521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fv 5602  df-topgen 14861  df-top 19526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator