MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltop2 Structured version   Unicode version

Theorem eltop2 19604
Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
eltop2  |-  ( J  e.  Top  ->  ( A  e.  J  <->  A. x  e.  A  E. y  e.  J  ( x  e.  y  /\  y  C_  A ) ) )
Distinct variable groups:    x, y, A    x, J, y

Proof of Theorem eltop2
StepHypRef Expression
1 tgtop 19602 . . 3  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
21eleq2d 2527 . 2  |-  ( J  e.  Top  ->  ( A  e.  ( topGen `  J )  <->  A  e.  J ) )
3 eltg2b 19587 . 2  |-  ( J  e.  Top  ->  ( A  e.  ( topGen `  J )  <->  A. x  e.  A  E. y  e.  J  ( x  e.  y  /\  y  C_  A ) ) )
42, 3bitr3d 255 1  |-  ( J  e.  Top  ->  ( A  e.  J  <->  A. x  e.  A  E. y  e.  J  ( x  e.  y  /\  y  C_  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1819   A.wral 2807   E.wrex 2808    C_ wss 3471   ` cfv 5594   topGenctg 14855   Topctop 19521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fv 5602  df-topgen 14861  df-top 19526
This theorem is referenced by:  isclo  19715  cncnp  19908  ist1-2  19975  hauscmp  20034  llycmpkgen2  20177  ptpjopn  20239  txkgen  20279  xkococn  20287  xkoinjcn  20314  fclscf  20652  subgntr  20731  opnsubg  20732  qustgpopn  20744  prdsxmslem2  21158  zdis  21447  efopn  23165  cvmopnlem  28920  neibastop3  30385
  Copyright terms: Public domain W3C validator