MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg3 Structured version   Unicode version

Theorem eltg3 19258
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
eltg3  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  E. x
( x  C_  B  /\  A  =  U. x ) ) )
Distinct variable groups:    x, A    x, B    x, V

Proof of Theorem eltg3
StepHypRef Expression
1 elfvdm 5892 . . . 4  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
2 inex1g 4590 . . . 4  |-  ( B  e.  dom  topGen  ->  ( B  i^i  ~P A )  e.  _V )
31, 2syl 16 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  ( B  i^i  ~P A )  e. 
_V )
4 eltg4i 19256 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  A  =  U. ( B  i^i  ~P A ) )
5 inss1 3718 . . . . . . 7  |-  ( B  i^i  ~P A ) 
C_  B
6 sseq1 3525 . . . . . . 7  |-  ( x  =  ( B  i^i  ~P A )  ->  (
x  C_  B  <->  ( B  i^i  ~P A )  C_  B ) )
75, 6mpbiri 233 . . . . . 6  |-  ( x  =  ( B  i^i  ~P A )  ->  x  C_  B )
87biantrurd 508 . . . . 5  |-  ( x  =  ( B  i^i  ~P A )  ->  ( A  =  U. x  <->  ( x  C_  B  /\  A  =  U. x
) ) )
9 unieq 4253 . . . . . 6  |-  ( x  =  ( B  i^i  ~P A )  ->  U. x  =  U. ( B  i^i  ~P A ) )
109eqeq2d 2481 . . . . 5  |-  ( x  =  ( B  i^i  ~P A )  ->  ( A  =  U. x  <->  A  =  U. ( B  i^i  ~P A ) ) )
118, 10bitr3d 255 . . . 4  |-  ( x  =  ( B  i^i  ~P A )  ->  (
( x  C_  B  /\  A  =  U. x )  <->  A  =  U. ( B  i^i  ~P A ) ) )
1211spcegv 3199 . . 3  |-  ( ( B  i^i  ~P A
)  e.  _V  ->  ( A  =  U. ( B  i^i  ~P A )  ->  E. x ( x 
C_  B  /\  A  =  U. x ) ) )
133, 4, 12sylc 60 . 2  |-  ( A  e.  ( topGen `  B
)  ->  E. x
( x  C_  B  /\  A  =  U. x ) )
14 eltg3i 19257 . . . . 5  |-  ( ( B  e.  V  /\  x  C_  B )  ->  U. x  e.  ( topGen `
 B ) )
15 eleq1 2539 . . . . 5  |-  ( A  =  U. x  -> 
( A  e.  (
topGen `  B )  <->  U. x  e.  ( topGen `  B )
) )
1614, 15syl5ibrcom 222 . . . 4  |-  ( ( B  e.  V  /\  x  C_  B )  -> 
( A  =  U. x  ->  A  e.  (
topGen `  B ) ) )
1716expimpd 603 . . 3  |-  ( B  e.  V  ->  (
( x  C_  B  /\  A  =  U. x )  ->  A  e.  ( topGen `  B )
) )
1817exlimdv 1700 . 2  |-  ( B  e.  V  ->  ( E. x ( x  C_  B  /\  A  =  U. x )  ->  A  e.  ( topGen `  B )
) )
1913, 18impbid2 204 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  E. x
( x  C_  B  /\  A  =  U. x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   _Vcvv 3113    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   U.cuni 4245   dom cdm 4999   ` cfv 5588   topGenctg 14693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5551  df-fun 5590  df-fv 5596  df-topgen 14699
This theorem is referenced by:  tgval3  19259  tgtop  19269  eltop3  19272  tgidm  19276  bastop1  19289  tgrest  19454  tgcn  19547  txbasval  19870  opnmblALT  21775  mbfimaopnlem  21825  isfne3  29772  fneuni  29776
  Copyright terms: Public domain W3C validator