MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg2b Structured version   Unicode version

Theorem eltg2b 19627
Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2b  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, V, y

Proof of Theorem eltg2b
StepHypRef Expression
1 eltg2 19626 . 2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
2 simpl 455 . . . . . . 7  |-  ( ( x  e.  y  /\  y  C_  A )  ->  x  e.  y )
32reximi 2922 . . . . . 6  |-  ( E. y  e.  B  ( x  e.  y  /\  y  C_  A )  ->  E. y  e.  B  x  e.  y )
4 eluni2 4239 . . . . . 6  |-  ( x  e.  U. B  <->  E. y  e.  B  x  e.  y )
53, 4sylibr 212 . . . . 5  |-  ( E. y  e.  B  ( x  e.  y  /\  y  C_  A )  ->  x  e.  U. B )
65ralimi 2847 . . . 4  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  ->  A. x  e.  A  x  e.  U. B )
7 dfss3 3479 . . . 4  |-  ( A 
C_  U. B  <->  A. x  e.  A  x  e.  U. B )
86, 7sylibr 212 . . 3  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  ->  A  C_  U. B )
98pm4.71ri 631 . 2  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) )
101, 9syl6bbr 263 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    e. wcel 1823   A.wral 2804   E.wrex 2805    C_ wss 3461   U.cuni 4235   ` cfv 5570   topGenctg 14927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fv 5578  df-topgen 14933
This theorem is referenced by:  tg2  19633  tgcl  19638  eltop2  19644  tgss2  19656  basgen2  19658  2ndc1stc  20118  eltx  20235  tgqioo  21471  isfne2  30400
  Copyright terms: Public domain W3C validator