MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg Structured version   Unicode version

Theorem eltg 18567
Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  C_  U. ( B  i^i  ~P A ) ) )

Proof of Theorem eltg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tgval 18565 . . 3  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
21eleq2d 2510 . 2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) } ) )
3 elex 2986 . . . 4  |-  ( A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) }  ->  A  e.  _V )
43adantl 466 . . 3  |-  ( ( B  e.  V  /\  A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) } )  ->  A  e.  _V )
5 inex1g 4440 . . . . . 6  |-  ( B  e.  V  ->  ( B  i^i  ~P A )  e.  _V )
6 uniexg 6382 . . . . . 6  |-  ( ( B  i^i  ~P A
)  e.  _V  ->  U. ( B  i^i  ~P A )  e.  _V )
75, 6syl 16 . . . . 5  |-  ( B  e.  V  ->  U. ( B  i^i  ~P A )  e.  _V )
8 ssexg 4443 . . . . 5  |-  ( ( A  C_  U. ( B  i^i  ~P A )  /\  U. ( B  i^i  ~P A )  e.  _V )  ->  A  e.  _V )
97, 8sylan2 474 . . . 4  |-  ( ( A  C_  U. ( B  i^i  ~P A )  /\  B  e.  V
)  ->  A  e.  _V )
109ancoms 453 . . 3  |-  ( ( B  e.  V  /\  A  C_  U. ( B  i^i  ~P A ) )  ->  A  e.  _V )
11 id 22 . . . . 5  |-  ( x  =  A  ->  x  =  A )
12 pweq 3868 . . . . . . 7  |-  ( x  =  A  ->  ~P x  =  ~P A
)
1312ineq2d 3557 . . . . . 6  |-  ( x  =  A  ->  ( B  i^i  ~P x )  =  ( B  i^i  ~P A ) )
1413unieqd 4106 . . . . 5  |-  ( x  =  A  ->  U. ( B  i^i  ~P x )  =  U. ( B  i^i  ~P A ) )
1511, 14sseq12d 3390 . . . 4  |-  ( x  =  A  ->  (
x  C_  U. ( B  i^i  ~P x )  <-> 
A  C_  U. ( B  i^i  ~P A ) ) )
1615elabg 3112 . . 3  |-  ( A  e.  _V  ->  ( A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) }  <->  A  C_  U. ( B  i^i  ~P A ) ) )
174, 10, 16pm5.21nd 893 . 2  |-  ( B  e.  V  ->  ( A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) }  <->  A  C_  U. ( B  i^i  ~P A ) ) )
182, 17bitrd 253 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  C_  U. ( B  i^i  ~P A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1369    e. wcel 1756   {cab 2429   _Vcvv 2977    i^i cin 3332    C_ wss 3333   ~Pcpw 3865   U.cuni 4096   ` cfv 5423   topGenctg 14381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5386  df-fun 5425  df-fv 5431  df-topgen 14387
This theorem is referenced by:  eltg4i  18570  eltg3i  18571  bastg  18576  unitg  18577  tgss  18578  eltop  18584  tgqtop  19290  isfne4  28546
  Copyright terms: Public domain W3C validator