MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuc Unicode version

Theorem elsuc 4354
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
elsuc.1  |-  A  e. 
_V
Assertion
Ref Expression
elsuc  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) )

Proof of Theorem elsuc
StepHypRef Expression
1 elsuc.1 . 2  |-  A  e. 
_V
2 elsucg 4352 . 2  |-  ( A  e.  _V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
31, 2ax-mp 10 1  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    \/ wo 359    = wceq 1619    e. wcel 1621   _Vcvv 2727   suc csuc 4287
This theorem is referenced by:  sucel  4358  suctr  4368  limsssuc  4532  omsmolem  6537  cantnfle  7256  infxpenlem  7525  inatsk  8280  untsucf  23227  dfon2lem7  23313
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-un 3083  df-sn 3550  df-suc 4291
  Copyright terms: Public domain W3C validator