![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsb3 | Structured version Visualization version Unicode version |
Description: Substitution applied to an atomic membership wff. (Contributed by NM, 7-Nov-2006.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
elsb3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1772 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | sbco2 2255 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | nfv 1772 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | elequ1 1905 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | sbie 2248 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | sbbii 1815 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | nfv 1772 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
8 | elequ1 1905 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | sbie 2248 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 2, 6, 9 | 3bitr3i 283 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-8 1900 ax-10 1926 ax-11 1931 ax-12 1944 ax-13 2102 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-ex 1675 df-nf 1679 df-sb 1809 |
This theorem is referenced by: cvjust 2457 |
Copyright terms: Public domain | W3C validator |