MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt2g Structured version   Unicode version

Theorem elrnmpt2g 6197
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
elrnmpt2g  |-  ( D  e.  V  ->  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
Distinct variable groups:    y, A    x, y, D
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)    V( x, y)

Proof of Theorem elrnmpt2g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2444 . . 3  |-  ( z  =  D  ->  (
z  =  C  <->  D  =  C ) )
212rexbidv 2753 . 2  |-  ( z  =  D  ->  ( E. x  e.  A  E. y  e.  B  z  =  C  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
3 rngop.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
43rnmpt2 6195 . 2  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
52, 4elab2g 3103 1  |-  ( D  e.  V  ->  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1369    e. wcel 1756   E.wrex 2711   ran crn 4836    e. cmpt2 6088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-rex 2716  df-rab 2719  df-v 2969  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-br 4288  df-opab 4346  df-cnv 4843  df-dm 4845  df-rn 4846  df-oprab 6090  df-mpt2 6091
This theorem is referenced by:  ordtbas2  18770  txopn  19150  tgisline  23005  elsx  26560
  Copyright terms: Public domain W3C validator