MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt2 Structured version   Unicode version

Theorem elrnmpt2 6312
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
elrnmpt2.1  |-  C  e. 
_V
Assertion
Ref Expression
elrnmpt2  |-  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C )
Distinct variable groups:    y, A    x, y, D
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem elrnmpt2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21rnmpt2 6309 . . 3  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
32eleq2i 2532 . 2  |-  ( D  e.  ran  F  <->  D  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  C } )
4 elrnmpt2.1 . . . . . 6  |-  C  e. 
_V
5 eleq1 2526 . . . . . 6  |-  ( D  =  C  ->  ( D  e.  _V  <->  C  e.  _V ) )
64, 5mpbiri 233 . . . . 5  |-  ( D  =  C  ->  D  e.  _V )
76rexlimivw 2941 . . . 4  |-  ( E. y  e.  B  D  =  C  ->  D  e. 
_V )
87rexlimivw 2941 . . 3  |-  ( E. x  e.  A  E. y  e.  B  D  =  C  ->  D  e. 
_V )
9 eqeq1 2458 . . . 4  |-  ( z  =  D  ->  (
z  =  C  <->  D  =  C ) )
1092rexbidv 2878 . . 3  |-  ( z  =  D  ->  ( E. x  e.  A  E. y  e.  B  z  =  C  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
118, 10elab3 3218 . 2  |-  ( D  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  <->  E. x  e.  A  E. y  e.  B  D  =  C )
123, 11bitri 249 1  |-  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1370    e. wcel 1758   {cab 2439   E.wrex 2799   _Vcvv 3076   ran crn 4948    |-> cmpt2 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pr 4638
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-sn 3985  df-pr 3987  df-op 3991  df-br 4400  df-opab 4458  df-cnv 4955  df-dm 4957  df-rn 4958  df-oprab 6203  df-mpt2 6204
This theorem is referenced by:  qexALT  11078  lsmelvalx  16259  efgtlen  16343  frgpnabllem1  16471  fmucndlem  19997  mbfimaopnlem  21265  tglnunirn  23117  tpr2rico  26486  mbfmco2  26823  br2base  26827  dya2icobrsiga  26834  dya2iocnrect  26839  dya2iocucvr  26842  sxbrsigalem2  26844  cntotbnd  28842  eldiophb  29242
  Copyright terms: Public domain W3C validator