Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfirn2 Structured version   Unicode version

Theorem elrfirn2 30562
Description: Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfirn2  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  -> 
( A  e.  ( fi `  ( { B }  u.  ran  ( y  e.  I  |->  C ) ) )  <->  E. v  e.  ( ~P I  i^i  Fin ) A  =  ( B  i^i  |^|_ y  e.  v  C ) ) )
Distinct variable groups:    v, A    v, B, y    v, C   
v, I, y    v, V, y
Allowed substitution hints:    A( y)    C( y)

Proof of Theorem elrfirn2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elpw2g 4616 . . . . . . 7  |-  ( B  e.  V  ->  ( C  e.  ~P B  <->  C 
C_  B ) )
21biimprd 223 . . . . . 6  |-  ( B  e.  V  ->  ( C  C_  B  ->  C  e.  ~P B ) )
32ralimdv 2877 . . . . 5  |-  ( B  e.  V  ->  ( A. y  e.  I  C  C_  B  ->  A. y  e.  I  C  e.  ~P B ) )
43imp 429 . . . 4  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  ->  A. y  e.  I  C  e.  ~P B
)
5 eqid 2467 . . . . 5  |-  ( y  e.  I  |->  C )  =  ( y  e.  I  |->  C )
65fmpt 6053 . . . 4  |-  ( A. y  e.  I  C  e.  ~P B  <->  ( y  e.  I  |->  C ) : I --> ~P B
)
74, 6sylib 196 . . 3  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  -> 
( y  e.  I  |->  C ) : I --> ~P B )
8 elrfirn 30561 . . 3  |-  ( ( B  e.  V  /\  ( y  e.  I  |->  C ) : I --> ~P B )  -> 
( A  e.  ( fi `  ( { B }  u.  ran  ( y  e.  I  |->  C ) ) )  <->  E. v  e.  ( ~P I  i^i  Fin ) A  =  ( B  i^i  |^|_ z  e.  v  ( ( y  e.  I  |->  C ) `  z ) ) ) )
97, 8syldan 470 . 2  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  -> 
( A  e.  ( fi `  ( { B }  u.  ran  ( y  e.  I  |->  C ) ) )  <->  E. v  e.  ( ~P I  i^i  Fin ) A  =  ( B  i^i  |^|_ z  e.  v  ( ( y  e.  I  |->  C ) `  z ) ) ) )
10 inss1 3723 . . . . . 6  |-  ( ~P I  i^i  Fin )  C_ 
~P I
1110sseli 3505 . . . . 5  |-  ( v  e.  ( ~P I  i^i  Fin )  ->  v  e.  ~P I )
1211elpwid 4026 . . . 4  |-  ( v  e.  ( ~P I  i^i  Fin )  ->  v  C_  I )
13 nffvmpt1 5880 . . . . . . . 8  |-  F/_ y
( ( y  e.  I  |->  C ) `  z )
14 nfcv 2629 . . . . . . . 8  |-  F/_ z
( ( y  e.  I  |->  C ) `  y )
15 fveq2 5872 . . . . . . . 8  |-  ( z  =  y  ->  (
( y  e.  I  |->  C ) `  z
)  =  ( ( y  e.  I  |->  C ) `  y ) )
1613, 14, 15cbviin 4369 . . . . . . 7  |-  |^|_ z  e.  v  ( (
y  e.  I  |->  C ) `  z )  =  |^|_ y  e.  v  ( ( y  e.  I  |->  C ) `  y )
17 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  V  /\  y  e.  I
)  /\  C  C_  B
)  ->  y  e.  I )
18 simpll 753 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  y  e.  I
)  /\  C  C_  B
)  ->  B  e.  V )
19 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  y  e.  I
)  /\  C  C_  B
)  ->  C  C_  B
)
2018, 19ssexd 4600 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  V  /\  y  e.  I
)  /\  C  C_  B
)  ->  C  e.  _V )
215fvmpt2 5964 . . . . . . . . . . . . 13  |-  ( ( y  e.  I  /\  C  e.  _V )  ->  ( ( y  e.  I  |->  C ) `  y )  =  C )
2217, 20, 21syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( B  e.  V  /\  y  e.  I
)  /\  C  C_  B
)  ->  ( (
y  e.  I  |->  C ) `  y )  =  C )
2322ex 434 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  y  e.  I )  ->  ( C  C_  B  ->  ( ( y  e.  I  |->  C ) `  y )  =  C ) )
2423ralimdva 2875 . . . . . . . . . 10  |-  ( B  e.  V  ->  ( A. y  e.  I  C  C_  B  ->  A. y  e.  I  ( (
y  e.  I  |->  C ) `  y )  =  C ) )
2524imp 429 . . . . . . . . 9  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  ->  A. y  e.  I 
( ( y  e.  I  |->  C ) `  y )  =  C )
26 ssralv 3569 . . . . . . . . 9  |-  ( v 
C_  I  ->  ( A. y  e.  I 
( ( y  e.  I  |->  C ) `  y )  =  C  ->  A. y  e.  v  ( ( y  e.  I  |->  C ) `  y )  =  C ) )
2725, 26mpan9 469 . . . . . . . 8  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  C_  I )  ->  A. y  e.  v 
( ( y  e.  I  |->  C ) `  y )  =  C )
28 iineq2 4349 . . . . . . . 8  |-  ( A. y  e.  v  (
( y  e.  I  |->  C ) `  y
)  =  C  ->  |^|_ y  e.  v  ( ( y  e.  I  |->  C ) `  y
)  =  |^|_ y  e.  v  C )
2927, 28syl 16 . . . . . . 7  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  C_  I )  ->  |^|_ y  e.  v  ( ( y  e.  I  |->  C ) `  y
)  =  |^|_ y  e.  v  C )
3016, 29syl5eq 2520 . . . . . 6  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  C_  I )  ->  |^|_ z  e.  v  ( ( y  e.  I  |->  C ) `  z
)  =  |^|_ y  e.  v  C )
3130ineq2d 3705 . . . . 5  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  C_  I )  -> 
( B  i^i  |^|_ z  e.  v  (
( y  e.  I  |->  C ) `  z
) )  =  ( B  i^i  |^|_ y  e.  v  C )
)
3231eqeq2d 2481 . . . 4  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  C_  I )  -> 
( A  =  ( B  i^i  |^|_ z  e.  v  ( (
y  e.  I  |->  C ) `  z ) )  <->  A  =  ( B  i^i  |^|_ y  e.  v  C ) ) )
3312, 32sylan2 474 . . 3  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  ( A  =  ( B  i^i  |^|_ z  e.  v  (
( y  e.  I  |->  C ) `  z
) )  <->  A  =  ( B  i^i  |^|_ y  e.  v  C )
) )
3433rexbidva 2975 . 2  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  -> 
( E. v  e.  ( ~P I  i^i 
Fin ) A  =  ( B  i^i  |^|_ z  e.  v  (
( y  e.  I  |->  C ) `  z
) )  <->  E. v  e.  ( ~P I  i^i 
Fin ) A  =  ( B  i^i  |^|_ y  e.  v  C
) ) )
359, 34bitrd 253 1  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  -> 
( A  e.  ( fi `  ( { B }  u.  ran  ( y  e.  I  |->  C ) ) )  <->  E. v  e.  ( ~P I  i^i  Fin ) A  =  ( B  i^i  |^|_ y  e.  v  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818   _Vcvv 3118    u. cun 3479    i^i cin 3480    C_ wss 3481   ~Pcpw 4016   {csn 4033   |^|_ciin 4332    |-> cmpt 4511   ran crn 5006   -->wf 5590   ` cfv 5594   Fincfn 7528   ficfi 7882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-fin 7532  df-fi 7883
This theorem is referenced by:  cmpfiiin  30563
  Copyright terms: Public domain W3C validator