Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfi Structured version   Unicode version

Theorem elrfi 28875
Description: Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfi  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) )
Distinct variable groups:    v, A    v, B    v, C    v, V

Proof of Theorem elrfi
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 2971 . . 3  |-  ( A  e.  ( fi `  ( { B }  u.  C ) )  ->  A  e.  _V )
21a1i 11 . 2  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  ->  A  e.  _V ) )
3 inex1g 4423 . . . . 5  |-  ( B  e.  V  ->  ( B  i^i  |^| v )  e. 
_V )
4 eleq1 2493 . . . . 5  |-  ( A  =  ( B  i^i  |^| v )  ->  ( A  e.  _V  <->  ( B  i^i  |^| v )  e. 
_V ) )
53, 4syl5ibrcom 222 . . . 4  |-  ( B  e.  V  ->  ( A  =  ( B  i^i  |^| v )  ->  A  e.  _V )
)
65rexlimdvw 2834 . . 3  |-  ( B  e.  V  ->  ( E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v )  ->  A  e.  _V )
)
76adantr 462 . 2  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
)  ->  A  e.  _V ) )
8 simpr 458 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  A  e. 
_V )
9 snex 4521 . . . . . 6  |-  { B }  e.  _V
10 pwexg 4464 . . . . . . . 8  |-  ( B  e.  V  ->  ~P B  e.  _V )
1110ad2antrr 718 . . . . . . 7  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ~P B  e.  _V )
12 simplr 747 . . . . . . 7  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  C  C_  ~P B )
1311, 12ssexd 4427 . . . . . 6  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  C  e. 
_V )
14 unexg 6370 . . . . . 6  |-  ( ( { B }  e.  _V  /\  C  e.  _V )  ->  ( { B }  u.  C )  e.  _V )
159, 13, 14sylancr 656 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( { B }  u.  C
)  e.  _V )
16 elfi 7651 . . . . 5  |-  ( ( A  e.  _V  /\  ( { B }  u.  C )  e.  _V )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin ) A  =  |^| w ) )
178, 15, 16syl2anc 654 . . . 4  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( A  e.  ( fi `  ( { B }  u.  C ) )  <->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin ) A  =  |^| w ) )
18 inss1 3558 . . . . . . . . . . . 12  |-  ( ~P ( { B }  u.  C )  i^i  Fin )  C_  ~P ( { B }  u.  C
)
19 uncom 3488 . . . . . . . . . . . . 13  |-  ( { B }  u.  C
)  =  ( C  u.  { B }
)
2019pweqi 3852 . . . . . . . . . . . 12  |-  ~P ( { B }  u.  C
)  =  ~P ( C  u.  { B } )
2118, 20sseqtri 3376 . . . . . . . . . . 11  |-  ( ~P ( { B }  u.  C )  i^i  Fin )  C_  ~P ( C  u.  { B }
)
2221sseli 3340 . . . . . . . . . 10  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  e.  ~P ( C  u.  { B } ) )
239elpwun 6378 . . . . . . . . . 10  |-  ( w  e.  ~P ( C  u.  { B }
)  <->  ( w  \  { B } )  e. 
~P C )
2422, 23sylib 196 . . . . . . . . 9  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  ( w  \  { B } )  e.  ~P C )
2524ad2antrl 720 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( w  \  { B } )  e.  ~P C )
26 inss2 3559 . . . . . . . . . . 11  |-  ( ~P ( { B }  u.  C )  i^i  Fin )  C_  Fin
2726sseli 3340 . . . . . . . . . 10  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  e.  Fin )
28 diffi 7531 . . . . . . . . . 10  |-  ( w  e.  Fin  ->  (
w  \  { B } )  e.  Fin )
2927, 28syl 16 . . . . . . . . 9  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  ( w  \  { B } )  e.  Fin )
3029ad2antrl 720 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( w  \  { B } )  e.  Fin )
3125, 30elind 3528 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( w  \  { B } )  e.  ( ~P C  i^i  Fin ) )
32 incom 3531 . . . . . . . . . . . 12  |-  ( B  i^i  A )  =  ( A  i^i  B
)
33 simprr 749 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  |^| w )
34 simplr 747 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  e.  _V )
3533, 34eqeltrrd 2508 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| w  e.  _V )
36 intex 4436 . . . . . . . . . . . . . . . . 17  |-  ( w  =/=  (/)  <->  |^| w  e.  _V )
3735, 36sylibr 212 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  w  =/=  (/) )
38 intssuni 4138 . . . . . . . . . . . . . . . 16  |-  ( w  =/=  (/)  ->  |^| w  C_  U. w )
3937, 38syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| w  C_  U. w
)
4018sseli 3340 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  e.  ~P ( { B }  u.  C
) )
41 elpwi 3857 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ~P ( { B }  u.  C
)  ->  w  C_  ( { B }  u.  C
) )
4240, 41syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  C_  ( { B }  u.  C
) )
4342ad2antrl 720 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  w  C_  ( { B }  u.  C )
)
44 pwidg 3861 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  V  ->  B  e.  ~P B )
4544snssd 4006 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  V  ->  { B }  C_  ~P B )
4645adantr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  { B }  C_ 
~P B )
47 simpr 458 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  C  C_  ~P B )
4846, 47unssd 3520 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( { B }  u.  C )  C_ 
~P B )
4948ad2antrr 718 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( { B }  u.  C )  C_  ~P B )
5043, 49sstrd 3354 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  w  C_  ~P B )
51 sspwuni 4244 . . . . . . . . . . . . . . . 16  |-  ( w 
C_  ~P B  <->  U. w  C_  B )
5250, 51sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  U. w  C_  B )
5339, 52sstrd 3354 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| w  C_  B )
5433, 53eqsstrd 3378 . . . . . . . . . . . . 13  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  C_  B )
55 df-ss 3330 . . . . . . . . . . . . 13  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
5654, 55sylib 196 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( A  i^i  B
)  =  A )
5732, 56syl5req 2478 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  ( B  i^i  A ) )
58 ineq2 3534 . . . . . . . . . . . 12  |-  ( A  =  |^| w  -> 
( B  i^i  A
)  =  ( B  i^i  |^| w ) )
5958ad2antll 721 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( B  i^i  A
)  =  ( B  i^i  |^| w ) )
6057, 59eqtrd 2465 . . . . . . . . . 10  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  ( B  i^i  |^| w ) )
61 intun 4148 . . . . . . . . . . . 12  |-  |^| ( { B }  u.  w
)  =  ( |^| { B }  i^i  |^| w )
62 intsng 4151 . . . . . . . . . . . . 13  |-  ( B  e.  V  ->  |^| { B }  =  B )
6362ineq1d 3539 . . . . . . . . . . . 12  |-  ( B  e.  V  ->  ( |^| { B }  i^i  |^| w )  =  ( B  i^i  |^| w
) )
6461, 63syl5req 2478 . . . . . . . . . . 11  |-  ( B  e.  V  ->  ( B  i^i  |^| w )  = 
|^| ( { B }  u.  w )
)
6564ad3antrrr 722 . . . . . . . . . 10  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( B  i^i  |^| w )  =  |^| ( { B }  u.  w ) )
6660, 65eqtrd 2465 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  |^| ( { B }  u.  w
) )
67 undif2 3743 . . . . . . . . . 10  |-  ( { B }  u.  (
w  \  { B } ) )  =  ( { B }  u.  w )
6867inteqi 4120 . . . . . . . . 9  |-  |^| ( { B }  u.  (
w  \  { B } ) )  = 
|^| ( { B }  u.  w )
6966, 68syl6eqr 2483 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  |^| ( { B }  u.  (
w  \  { B } ) ) )
70 intun 4148 . . . . . . . . . 10  |-  |^| ( { B }  u.  (
w  \  { B } ) )  =  ( |^| { B }  i^i  |^| ( w  \  { B } ) )
7162ineq1d 3539 . . . . . . . . . 10  |-  ( B  e.  V  ->  ( |^| { B }  i^i  |^| ( w  \  { B } ) )  =  ( B  i^i  |^| ( w  \  { B } ) ) )
7270, 71syl5eq 2477 . . . . . . . . 9  |-  ( B  e.  V  ->  |^| ( { B }  u.  (
w  \  { B } ) )  =  ( B  i^i  |^| ( w  \  { B } ) ) )
7372ad3antrrr 722 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| ( { B }  u.  ( w  \  { B } ) )  =  ( B  i^i  |^| ( w  \  { B } ) ) )
7469, 73eqtrd 2465 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  ( B  i^i  |^| ( w  \  { B } ) ) )
75 inteq 4119 . . . . . . . . . 10  |-  ( v  =  ( w  \  { B } )  ->  |^| v  =  |^| ( w  \  { B } ) )
7675ineq2d 3540 . . . . . . . . 9  |-  ( v  =  ( w  \  { B } )  -> 
( B  i^i  |^| v )  =  ( B  i^i  |^| (
w  \  { B } ) ) )
7776eqeq2d 2444 . . . . . . . 8  |-  ( v  =  ( w  \  { B } )  -> 
( A  =  ( B  i^i  |^| v
)  <->  A  =  ( B  i^i  |^| ( w  \  { B } ) ) ) )
7877rspcev 3062 . . . . . . 7  |-  ( ( ( w  \  { B } )  e.  ( ~P C  i^i  Fin )  /\  A  =  ( B  i^i  |^| (
w  \  { B } ) ) )  ->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) )
7931, 74, 78syl2anc 654 . . . . . 6  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) )
8079rexlimdvaa 2832 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w  ->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) ) )
81 ssun1 3507 . . . . . . . . . . . 12  |-  { B }  C_  ( { B }  u.  C )
8281a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  { B }  C_  ( { B }  u.  C )
)
83 inss1 3558 . . . . . . . . . . . . . 14  |-  ( ~P C  i^i  Fin )  C_ 
~P C
8483sseli 3340 . . . . . . . . . . . . 13  |-  ( v  e.  ( ~P C  i^i  Fin )  ->  v  e.  ~P C )
85 elpwi 3857 . . . . . . . . . . . . 13  |-  ( v  e.  ~P C  -> 
v  C_  C )
86 ssun4 3510 . . . . . . . . . . . . 13  |-  ( v 
C_  C  ->  v  C_  ( { B }  u.  C ) )
8784, 85, 863syl 20 . . . . . . . . . . . 12  |-  ( v  e.  ( ~P C  i^i  Fin )  ->  v  C_  ( { B }  u.  C ) )
8887adantl 463 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  v  C_  ( { B }  u.  C ) )
8982, 88unssd 3520 . . . . . . . . . 10  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  C_  ( { B }  u.  C
) )
90 vex 2965 . . . . . . . . . . . 12  |-  v  e. 
_V
919, 90unex 6367 . . . . . . . . . . 11  |-  ( { B }  u.  v
)  e.  _V
9291elpw 3854 . . . . . . . . . 10  |-  ( ( { B }  u.  v )  e.  ~P ( { B }  u.  C )  <->  ( { B }  u.  v
)  C_  ( { B }  u.  C
) )
9389, 92sylibr 212 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  e.  ~P ( { B }  u.  C
) )
94 snfi 7378 . . . . . . . . . 10  |-  { B }  e.  Fin
95 inss2 3559 . . . . . . . . . . . 12  |-  ( ~P C  i^i  Fin )  C_ 
Fin
9695sseli 3340 . . . . . . . . . . 11  |-  ( v  e.  ( ~P C  i^i  Fin )  ->  v  e.  Fin )
9796adantl 463 . . . . . . . . . 10  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  v  e.  Fin )
98 unfi 7567 . . . . . . . . . 10  |-  ( ( { B }  e.  Fin  /\  v  e.  Fin )  ->  ( { B }  u.  v )  e.  Fin )
9994, 97, 98sylancr 656 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  e.  Fin )
10093, 99elind 3528 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) )
10162eqcomd 2438 . . . . . . . . . . 11  |-  ( B  e.  V  ->  B  =  |^| { B }
)
102101ineq1d 3539 . . . . . . . . . 10  |-  ( B  e.  V  ->  ( B  i^i  |^| v )  =  ( |^| { B }  i^i  |^| v ) )
103 intun 4148 . . . . . . . . . 10  |-  |^| ( { B }  u.  v
)  =  ( |^| { B }  i^i  |^| v )
104102, 103syl6eqr 2483 . . . . . . . . 9  |-  ( B  e.  V  ->  ( B  i^i  |^| v )  = 
|^| ( { B }  u.  v )
)
105104ad3antrrr 722 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( B  i^i  |^| v )  = 
|^| ( { B }  u.  v )
)
106 inteq 4119 . . . . . . . . . 10  |-  ( w  =  ( { B }  u.  v )  ->  |^| w  =  |^| ( { B }  u.  v ) )
107106eqeq2d 2444 . . . . . . . . 9  |-  ( w  =  ( { B }  u.  v )  ->  ( ( B  i^i  |^| v )  =  |^| w 
<->  ( B  i^i  |^| v )  =  |^| ( { B }  u.  v ) ) )
108107rspcev 3062 . . . . . . . 8  |-  ( ( ( { B }  u.  v )  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  ( B  i^i  |^| v )  = 
|^| ( { B }  u.  v )
)  ->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )
( B  i^i  |^| v )  =  |^| w )
109100, 105, 108syl2anc 654 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )
( B  i^i  |^| v )  =  |^| w )
110 eqeq1 2439 . . . . . . . 8  |-  ( A  =  ( B  i^i  |^| v )  ->  ( A  =  |^| w  <->  ( B  i^i  |^| v )  = 
|^| w ) )
111110rexbidv 2726 . . . . . . 7  |-  ( A  =  ( B  i^i  |^| v )  ->  ( E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w 
<->  E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) ( B  i^i  |^| v )  = 
|^| w ) )
112109, 111syl5ibrcom 222 . . . . . 6  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( A  =  ( B  i^i  |^| v )  ->  E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w ) )
113112rexlimdva 2831 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v )  ->  E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w ) )
11480, 113impbid 191 . . . 4  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w 
<->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) ) )
11517, 114bitrd 253 . . 3  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( A  e.  ( fi `  ( { B }  u.  C ) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) )
116115ex 434 . 2  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e. 
_V  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) ) )
1172, 7, 116pm5.21ndd 354 1  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755    =/= wne 2596   E.wrex 2706   _Vcvv 2962    \ cdif 3313    u. cun 3314    i^i cin 3315    C_ wss 3316   (/)c0 3625   ~Pcpw 3848   {csn 3865   U.cuni 4079   |^|cint 4116   ` cfv 5406   Fincfn 7298   ficfi 7648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-fin 7302  df-fi 7649
This theorem is referenced by:  elrfirn  28876
  Copyright terms: Public domain W3C validator