MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrestr Structured version   Unicode version

Theorem elrestr 14687
Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrestr  |-  ( ( J  e.  V  /\  S  e.  W  /\  A  e.  J )  ->  ( A  i^i  S
)  e.  ( Jt  S ) )

Proof of Theorem elrestr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . 4  |-  ( A  i^i  S )  =  ( A  i^i  S
)
2 ineq1 3693 . . . . . 6  |-  ( x  =  A  ->  (
x  i^i  S )  =  ( A  i^i  S ) )
32eqeq2d 2481 . . . . 5  |-  ( x  =  A  ->  (
( A  i^i  S
)  =  ( x  i^i  S )  <->  ( A  i^i  S )  =  ( A  i^i  S ) ) )
43rspcev 3214 . . . 4  |-  ( ( A  e.  J  /\  ( A  i^i  S )  =  ( A  i^i  S ) )  ->  E. x  e.  J  ( A  i^i  S )  =  ( x  i^i  S ) )
51, 4mpan2 671 . . 3  |-  ( A  e.  J  ->  E. x  e.  J  ( A  i^i  S )  =  ( x  i^i  S ) )
6 elrest 14686 . . 3  |-  ( ( J  e.  V  /\  S  e.  W )  ->  ( ( A  i^i  S )  e.  ( Jt  S )  <->  E. x  e.  J  ( A  i^i  S )  =  ( x  i^i 
S ) ) )
75, 6syl5ibr 221 . 2  |-  ( ( J  e.  V  /\  S  e.  W )  ->  ( A  e.  J  ->  ( A  i^i  S
)  e.  ( Jt  S ) ) )
873impia 1193 1  |-  ( ( J  e.  V  /\  S  e.  W  /\  A  e.  J )  ->  ( A  i^i  S
)  e.  ( Jt  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2815    i^i cin 3475  (class class class)co 6285   ↾t crest 14679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-rest 14681
This theorem is referenced by:  firest  14691  restbas  19465  tgrest  19466  resttopon  19468  restcld  19479  restfpw  19486  neitr  19487  restntr  19489  ordtrest  19509  cnrest  19592  lmss  19605  consubclo  19731  restnlly  19789  islly2  19791  cldllycmp  19802  lly1stc  19803  kgenss  19871  xkococnlem  19987  xkoinjcn  20015  qtoprest  20045  trfbas2  20171  trfil1  20214  trfil2  20215  fgtr  20218  trfg  20219  uzrest  20225  trufil  20238  flimrest  20311  cnextcn  20394  trust  20559  restutop  20567  trcfilu  20624  cfiluweak  20625  xrsmopn  21144  zdis  21148  xrge0tsms  21166  cnheibor  21282  cfilres  21562  lhop2  22243  psercn  22647  xrlimcnp  23123  xrge0tsmsd  27535  ordtrestNEW  27654  pnfneige0  27684  lmxrge0  27685  rrhre  27750  cvmscld  28469  cvmopnlem  28474  cvmliftmolem1  28477  subspopn  30075  iocopn  31351  icoopn  31356  limcresiooub  31411  limcresioolb  31412  fourierdlem32  31666  fourierdlem33  31667  fourierdlem48  31682  fourierdlem49  31683
  Copyright terms: Public domain W3C validator