MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqtop2 Structured version   Unicode version

Theorem elqtop2 19274
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
qtoptop.1  |-  X  = 
U. J
Assertion
Ref Expression
elqtop2  |-  ( ( J  e.  V  /\  F : X -onto-> Y )  ->  ( A  e.  ( J qTop  F )  <-> 
( A  C_  Y  /\  ( `' F " A )  e.  J
) ) )

Proof of Theorem elqtop2
StepHypRef Expression
1 ssid 3375 . 2  |-  X  C_  X
2 qtoptop.1 . . 3  |-  X  = 
U. J
32elqtop 19270 . 2  |-  ( ( J  e.  V  /\  F : X -onto-> Y  /\  X  C_  X )  -> 
( A  e.  ( J qTop  F )  <->  ( A  C_  Y  /\  ( `' F " A )  e.  J ) ) )
41, 3mp3an3 1303 1  |-  ( ( J  e.  V  /\  F : X -onto-> Y )  ->  ( A  e.  ( J qTop  F )  <-> 
( A  C_  Y  /\  ( `' F " A )  e.  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    C_ wss 3328   U.cuni 4091   `'ccnv 4839   "cima 4843   -onto->wfo 5416  (class class class)co 6091   qTop cqtop 14441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-qtop 14445
This theorem is referenced by:  qtopuni  19275  qtopkgen  19283  basqtop  19284  tgqtop  19285  qtopcmap  19292  imasf1oxms  20064
  Copyright terms: Public domain W3C validator