Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsi Unicode version

Theorem elqsi 6917
 Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
elqsi
Distinct variable groups:   ,   ,   ,

Proof of Theorem elqsi
StepHypRef Expression
1 elqsg 6915 . 2
21ibi 233 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1649   wcel 1721  wrex 2667  cec 6862  cqs 6863 This theorem is referenced by:  ectocld  6930  ecoptocl  6953  eroveu  6958  pstmxmet  24245 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-rex 2672  df-v 2918  df-qs 6870
 Copyright terms: Public domain W3C validator