MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwun Structured version   Unicode version

Theorem elpwun 6586
Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.)
Hypothesis
Ref Expression
eldifpw.1  |-  C  e. 
_V
Assertion
Ref Expression
elpwun  |-  ( A  e.  ~P ( B  u.  C )  <->  ( A  \  C )  e.  ~P B )

Proof of Theorem elpwun
StepHypRef Expression
1 elex 3115 . 2  |-  ( A  e.  ~P ( B  u.  C )  ->  A  e.  _V )
2 elex 3115 . . 3  |-  ( ( A  \  C )  e.  ~P B  -> 
( A  \  C
)  e.  _V )
3 eldifpw.1 . . . 4  |-  C  e. 
_V
4 difex2 6580 . . . 4  |-  ( C  e.  _V  ->  ( A  e.  _V  <->  ( A  \  C )  e.  _V ) )
53, 4ax-mp 5 . . 3  |-  ( A  e.  _V  <->  ( A  \  C )  e.  _V )
62, 5sylibr 212 . 2  |-  ( ( A  \  C )  e.  ~P B  ->  A  e.  _V )
7 elpwg 4007 . . 3  |-  ( A  e.  _V  ->  ( A  e.  ~P ( B  u.  C )  <->  A 
C_  ( B  u.  C ) ) )
8 difexg 4585 . . . . 5  |-  ( A  e.  _V  ->  ( A  \  C )  e. 
_V )
9 elpwg 4007 . . . . 5  |-  ( ( A  \  C )  e.  _V  ->  (
( A  \  C
)  e.  ~P B  <->  ( A  \  C ) 
C_  B ) )
108, 9syl 16 . . . 4  |-  ( A  e.  _V  ->  (
( A  \  C
)  e.  ~P B  <->  ( A  \  C ) 
C_  B ) )
11 uncom 3634 . . . . . 6  |-  ( B  u.  C )  =  ( C  u.  B
)
1211sseq2i 3514 . . . . 5  |-  ( A 
C_  ( B  u.  C )  <->  A  C_  ( C  u.  B )
)
13 ssundif 3899 . . . . 5  |-  ( A 
C_  ( C  u.  B )  <->  ( A  \  C )  C_  B
)
1412, 13bitri 249 . . . 4  |-  ( A 
C_  ( B  u.  C )  <->  ( A  \  C )  C_  B
)
1510, 14syl6rbbr 264 . . 3  |-  ( A  e.  _V  ->  ( A  C_  ( B  u.  C )  <->  ( A  \  C )  e.  ~P B ) )
167, 15bitrd 253 . 2  |-  ( A  e.  _V  ->  ( A  e.  ~P ( B  u.  C )  <->  ( A  \  C )  e.  ~P B ) )
171, 6, 16pm5.21nii 351 1  |-  ( A  e.  ~P ( B  u.  C )  <->  ( A  \  C )  e.  ~P B )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    e. wcel 1823   _Vcvv 3106    \ cdif 3458    u. cun 3459    C_ wss 3461   ~Pcpw 3999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-pw 4001  df-sn 4017  df-pr 4019  df-uni 4236
This theorem is referenced by:  pwfilem  7806  elrfi  30866
  Copyright terms: Public domain W3C validator