Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwgdedVD Unicode version

Theorem elpwgdedVD 28738
 Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived from elpwg 3766. In form of VD deduction with and as variable virtual hypothesis collections based on Mario Carneiro's metavariable concept. elpwgded 28362 is elpwgdedVD 28738 using conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpwgdedVD.1
elpwgdedVD.2
Assertion
Ref Expression
elpwgdedVD

Proof of Theorem elpwgdedVD
StepHypRef Expression
1 elpwgdedVD.1 . 2
2 elpwgdedVD.2 . 2
3 elpwg 3766 . . 3
43biimpar 472 . 2
51, 2, 4el12 28547 1
 Colors of variables: wff set class Syntax hints:   wcel 1721  cvv 2916   wss 3280  cpw 3759  wvd1 28369  wvhc2 28381 This theorem is referenced by:  sspwimpVD  28740 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-v 2918  df-in 3287  df-ss 3294  df-pw 3761  df-vd1 28370  df-vhc2 28382
 Copyright terms: Public domain W3C validator