MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elptr Structured version   Unicode version

Theorem elptr 19806
Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
Assertion
Ref Expression
elptr  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  X_ y  e.  A  ( G `  y )  e.  B
)
Distinct variable groups:    x, g,
y, G    z, g, A, x, y    g, F, x, y, z    g, V, x, y, z    y, W
Allowed substitution hints:    B( x, y, z, g)    G( z)    W( x, z, g)

Proof of Theorem elptr
Dummy variables  h  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1022 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  G  Fn  A )
2 simp1 996 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  A  e.  V )
3 fnex 6125 . . . 4  |-  ( ( G  Fn  A  /\  A  e.  V )  ->  G  e.  _V )
41, 2, 3syl2anc 661 . . 3  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  G  e.  _V )
5 simp2r 1023 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )
6 difeq2 3616 . . . . . . 7  |-  ( w  =  W  ->  ( A  \  w )  =  ( A  \  W
) )
76raleqdv 3064 . . . . . 6  |-  ( w  =  W  ->  ( A. y  e.  ( A  \  w ) ( G `  y )  =  U. ( F `
 y )  <->  A. y  e.  ( A  \  W
) ( G `  y )  =  U. ( F `  y ) ) )
87rspcev 3214 . . . . 5  |-  ( ( W  e.  Fin  /\  A. y  e.  ( A 
\  W ) ( G `  y )  =  U. ( F `
 y ) )  ->  E. w  e.  Fin  A. y  e.  ( A 
\  w ) ( G `  y )  =  U. ( F `
 y ) )
983ad2ant3 1019 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) )
101, 5, 93jca 1176 . . 3  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) ) )
11 fveq1 5863 . . . . . . . 8  |-  ( h  =  G  ->  (
h `  y )  =  ( G `  y ) )
1211eqcomd 2475 . . . . . . 7  |-  ( h  =  G  ->  ( G `  y )  =  ( h `  y ) )
1312ixpeq2dv 7482 . . . . . 6  |-  ( h  =  G  ->  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
)
1413biantrud 507 . . . . 5  |-  ( h  =  G  ->  (
( h  Fn  A  /\  A. y  e.  A  ( h `  y
)  e.  ( F `
 y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w ) ( h `
 y )  = 
U. ( F `  y ) )  <->  ( (
h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( h `  y )  =  U. ( F `  y ) )  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) ) )
15 fneq1 5667 . . . . . 6  |-  ( h  =  G  ->  (
h  Fn  A  <->  G  Fn  A ) )
1611eleq1d 2536 . . . . . . 7  |-  ( h  =  G  ->  (
( h `  y
)  e.  ( F `
 y )  <->  ( G `  y )  e.  ( F `  y ) ) )
1716ralbidv 2903 . . . . . 6  |-  ( h  =  G  ->  ( A. y  e.  A  ( h `  y
)  e.  ( F `
 y )  <->  A. y  e.  A  ( G `  y )  e.  ( F `  y ) ) )
1811eqeq1d 2469 . . . . . . 7  |-  ( h  =  G  ->  (
( h `  y
)  =  U. ( F `  y )  <->  ( G `  y )  =  U. ( F `
 y ) ) )
1918rexralbidv 2981 . . . . . 6  |-  ( h  =  G  ->  ( E. w  e.  Fin  A. y  e.  ( A 
\  w ) ( h `  y )  =  U. ( F `
 y )  <->  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) ) )
2015, 17, 193anbi123d 1299 . . . . 5  |-  ( h  =  G  ->  (
( h  Fn  A  /\  A. y  e.  A  ( h `  y
)  e.  ( F `
 y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w ) ( h `
 y )  = 
U. ( F `  y ) )  <->  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( G `  y
)  =  U. ( F `  y )
) ) )
2114, 20bitr3d 255 . . . 4  |-  ( h  =  G  ->  (
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
)  <->  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( G `  y
)  =  U. ( F `  y )
) ) )
2221spcegv 3199 . . 3  |-  ( G  e.  _V  ->  (
( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) )  ->  E. h
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) ) )
234, 10, 22sylc 60 . 2  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  E. h
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) )
24 ptbas.1 . . 3  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
2524elpt 19805 . 2  |-  ( X_ y  e.  A  ( G `  y )  e.  B  <->  E. h ( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( h `  y )  =  U. ( F `  y ) )  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) )
2623, 25sylibr 212 1  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  X_ y  e.  A  ( G `  y )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815   _Vcvv 3113    \ cdif 3473   U.cuni 4245    Fn wfn 5581   ` cfv 5586   X_cixp 7466   Fincfn 7513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ixp 7467
This theorem is referenced by:  elptr2  19807
  Copyright terms: Public domain W3C validator