Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpotr Unicode version

Theorem elpotr 23305
Description: A class of transitive sets is partially ordered by  _E. (Contributed by Scott Fenton, 15-Oct-2010.)
Assertion
Ref Expression
elpotr  |-  ( A. z  e.  A  Tr  z  ->  _E  Po  A
)
Distinct variable group:    z, A

Proof of Theorem elpotr
StepHypRef Expression
1 alral 2563 . . . . . 6  |-  ( A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. y  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
21alimi 1546 . . . . 5  |-  ( A. x A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. x A. y  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
3 alral 2563 . . . . 5  |-  ( A. x A. y  e.  A  ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. x  e.  A  A. y  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
42, 3syl 17 . . . 4  |-  ( A. x A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. x  e.  A  A. y  e.  A  ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
54ralimi 2580 . . 3  |-  ( A. z  e.  A  A. x A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. z  e.  A  A. x  e.  A  A. y  e.  A  ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
6 ralcom 2662 . . . 4  |-  ( A. z  e.  A  A. x  e.  A  A. y  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. x  e.  A  A. z  e.  A  A. y  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
7 ralcom 2662 . . . . 5  |-  ( A. z  e.  A  A. y  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. y  e.  A  A. z  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
87ralbii 2531 . . . 4  |-  ( A. x  e.  A  A. z  e.  A  A. y  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
96, 8bitri 242 . . 3  |-  ( A. z  e.  A  A. x  e.  A  A. y  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
105, 9sylib 190 . 2  |-  ( A. z  e.  A  A. x A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
11 dftr2 4012 . . 3  |-  ( Tr  z  <->  A. x A. y
( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
1211ralbii 2531 . 2  |-  ( A. z  e.  A  Tr  z 
<-> 
A. z  e.  A  A. x A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
13 df-po 4207 . . 3  |-  (  _E  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x  _E  x  /\  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
14 epel 4201 . . . . . . . 8  |-  ( x  _E  y  <->  x  e.  y )
15 epel 4201 . . . . . . . 8  |-  ( y  _E  z  <->  y  e.  z )
1614, 15anbi12i 681 . . . . . . 7  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
17 epel 4201 . . . . . . 7  |-  ( x  _E  z  <->  x  e.  z )
1816, 17imbi12i 318 . . . . . 6  |-  ( ( ( x  _E  y  /\  y  _E  z
)  ->  x  _E  z )  <->  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
19 elirrv 7195 . . . . . . . 8  |-  -.  x  e.  x
20 epel 4201 . . . . . . . 8  |-  ( x  _E  x  <->  x  e.  x )
2119, 20mtbir 292 . . . . . . 7  |-  -.  x  _E  x
2221biantrur 494 . . . . . 6  |-  ( ( ( x  _E  y  /\  y  _E  z
)  ->  x  _E  z )  <->  ( -.  x  _E  x  /\  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
2318, 22bitr3i 244 . . . . 5  |-  ( ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  ( -.  x  _E  x  /\  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
2423ralbii 2531 . . . 4  |-  ( A. z  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. z  e.  A  ( -.  x  _E  x  /\  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
25242ralbii 2533 . . 3  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x  _E  x  /\  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
2613, 25bitr4i 245 . 2  |-  (  _E  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
2710, 12, 263imtr4i 259 1  |-  ( A. z  e.  A  Tr  z  ->  _E  Po  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   A.wal 1532   A.wral 2509   class class class wbr 3920   Tr wtr 4010    _E cep 4196    Po wpo 4205
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-reg 7190
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207
  Copyright terms: Public domain W3C validator