MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpm2g Unicode version

Theorem elpm2g 6992
Description: The predicate "is a partial function." (Contributed by NM, 31-Dec-2013.)
Assertion
Ref Expression
elpm2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( F  e.  ( A  ^pm  B )  <->  ( F : dom  F --> A  /\  dom  F  C_  B ) ) )

Proof of Theorem elpm2g
StepHypRef Expression
1 elpmg 6991 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( F  e.  ( A  ^pm  B )  <->  ( Fun  F  /\  F  C_  ( B  X.  A
) ) ) )
2 funssxp 5563 . 2  |-  ( ( Fun  F  /\  F  C_  ( B  X.  A
) )  <->  ( F : dom  F --> A  /\  dom  F  C_  B )
)
31, 2syl6bb 253 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( F  e.  ( A  ^pm  B )  <->  ( F : dom  F --> A  /\  dom  F  C_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1721    C_ wss 3280    X. cxp 4835   dom cdm 4837   Fun wfun 5407   -->wf 5409  (class class class)co 6040    ^pm cpm 6978
This theorem is referenced by:  elpm2r  6993  elpmi  6994  elpm2  7004  lmcnp  17322  cmetcaulem  19194  mbfres  19489  dvbsss  19742  perfdvf  19743  dvnff  19762  dvnf  19766  dvnbss  19767  dvnadd  19768  cpnord  19774
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-pm 6980
  Copyright terms: Public domain W3C validator