MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elply2 Structured version   Visualization version   Unicode version

Theorem elply2 23229
Description: The coefficient function can be assumed to have zeroes outside  0 ... n. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
elply2  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
Distinct variable groups:    k, a, n, z, S    F, a, n
Allowed substitution hints:    F( z, k)

Proof of Theorem elply2
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 23228 . . 3  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. f  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) ) ) )
2 simpr 468 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  f  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
3 simpll 768 . . . . . . . . . . . . . . . 16  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  S  C_  CC )
4 cnex 9638 . . . . . . . . . . . . . . . 16  |-  CC  e.  _V
5 ssexg 4542 . . . . . . . . . . . . . . . 16  |-  ( ( S  C_  CC  /\  CC  e.  _V )  ->  S  e.  _V )
63, 4, 5sylancl 675 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  S  e.  _V )
7 snex 4641 . . . . . . . . . . . . . . 15  |-  { 0 }  e.  _V
8 unexg 6611 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  _V  /\  { 0 }  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
96, 7, 8sylancl 675 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  ( S  u.  { 0 } )  e.  _V )
10 nn0ex 10899 . . . . . . . . . . . . . 14  |-  NN0  e.  _V
11 elmapg 7503 . . . . . . . . . . . . . 14  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( f  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  f : NN0 --> ( S  u.  { 0 } ) ) )
129, 10, 11sylancl 675 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
f  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) 
<->  f : NN0 --> ( S  u.  { 0 } ) ) )
132, 12mpbid 215 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  f : NN0 --> ( S  u.  { 0 } ) )
1413ffvelrnda 6037 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )  /\  x  e.  NN0 )  ->  (
f `  x )  e.  ( S  u.  {
0 } ) )
15 ssun2 3589 . . . . . . . . . . . 12  |-  { 0 }  C_  ( S  u.  { 0 } )
16 c0ex 9655 . . . . . . . . . . . . 13  |-  0  e.  _V
1716snss 4087 . . . . . . . . . . . 12  |-  ( 0  e.  ( S  u.  { 0 } )  <->  { 0 }  C_  ( S  u.  { 0 } ) )
1815, 17mpbir 214 . . . . . . . . . . 11  |-  0  e.  ( S  u.  {
0 } )
19 ifcl 3914 . . . . . . . . . . 11  |-  ( ( ( f `  x
)  e.  ( S  u.  { 0 } )  /\  0  e.  ( S  u.  {
0 } ) )  ->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 )  e.  ( S  u.  {
0 } ) )
2014, 18, 19sylancl 675 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )  /\  x  e.  NN0 )  ->  if ( x  e.  (
0 ... n ) ,  ( f `  x
) ,  0 )  e.  ( S  u.  { 0 } ) )
21 eqid 2471 . . . . . . . . . 10  |-  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )  =  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )
2220, 21fmptd 6061 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) )
23 elmapg 7503 . . . . . . . . . 10  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) 
<->  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) ) )
249, 10, 23sylancl 675 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) ) )
2522, 24mpbird 240 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
26 eleq1 2537 . . . . . . . . . . . . . . . . 17  |-  ( x  =  k  ->  (
x  e.  ( 0 ... n )  <->  k  e.  ( 0 ... n
) ) )
27 fveq2 5879 . . . . . . . . . . . . . . . . 17  |-  ( x  =  k  ->  (
f `  x )  =  ( f `  k ) )
2826, 27ifbieq1d 3895 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  if ( x  e.  (
0 ... n ) ,  ( f `  x
) ,  0 )  =  if ( k  e.  ( 0 ... n ) ,  ( f `  k ) ,  0 ) )
29 fvex 5889 . . . . . . . . . . . . . . . . 17  |-  ( f `
 k )  e. 
_V
3029, 16ifex 3940 . . . . . . . . . . . . . . . 16  |-  if ( k  e.  ( 0 ... n ) ,  ( f `  k
) ,  0 )  e.  _V
3128, 21, 30fvmpt 5963 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =  if ( k  e.  ( 0 ... n ) ,  ( f `  k ) ,  0 ) )
3231ad2antll 743 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  ( f  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  /\  k  e. 
NN0 ) )  -> 
( ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) `
 k )  =  if ( k  e.  ( 0 ... n
) ,  ( f `
 k ) ,  0 ) )
33 iffalse 3881 . . . . . . . . . . . . . . 15  |-  ( -.  k  e.  ( 0 ... n )  ->  if ( k  e.  ( 0 ... n ) ,  ( f `  k ) ,  0 )  =  0 )
3433eqeq2d 2481 . . . . . . . . . . . . . 14  |-  ( -.  k  e.  ( 0 ... n )  -> 
( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =  if ( k  e.  ( 0 ... n ) ,  ( f `  k ) ,  0 )  <->  ( (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =  0 ) )
3532, 34syl5ibcom 228 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  ( f  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  /\  k  e. 
NN0 ) )  -> 
( -.  k  e.  ( 0 ... n
)  ->  ( (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =  0 ) )
3635necon1ad 2660 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  ( f  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  /\  k  e. 
NN0 ) )  -> 
( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =/=  0  ->  k  e.  ( 0 ... n
) ) )
37 elfzle2 11829 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... n )  ->  k  <_  n )
3836, 37syl6 33 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  ( f  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  /\  k  e. 
NN0 ) )  -> 
( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =/=  0  ->  k  <_  n ) )
3938anassrs 660 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )  /\  k  e.  NN0 )  ->  (
( ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) `
 k )  =/=  0  ->  k  <_  n ) )
4039ralrimiva 2809 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  A. k  e.  NN0  ( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =/=  0  ->  k  <_  n ) )
41 simplr 770 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  n  e.  NN0 )
42 0cnd 9654 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  0  e.  CC )
4342snssd 4108 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  { 0 }  C_  CC )
443, 43unssd 3601 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  ( S  u.  { 0 } )  C_  CC )
4522, 44fssd 5750 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) : NN0 --> CC )
46 plyco0 23225 . . . . . . . . . 10  |-  ( ( n  e.  NN0  /\  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) : NN0 --> CC )  ->  ( (
( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =/=  0  ->  k  <_  n ) ) )
4741, 45, 46syl2anc 673 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
( ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =/=  0  ->  k  <_  n ) ) )
4840, 47mpbird 240 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 } )
49 eqidd 2472 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( f `
 k )  x.  ( z ^ k
) ) ) )
50 imaeq1 5169 . . . . . . . . . . 11  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) " ( ZZ>= `  ( n  +  1
) ) ) )
5150eqeq1d 2473 . . . . . . . . . 10  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  <->  ( (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 } ) )
52 fveq1 5878 . . . . . . . . . . . . . . 15  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( a `  k )  =  ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) `  k
) )
53 elfznn0 11913 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
5453, 31syl 17 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... n )  ->  (
( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) `  k
)  =  if ( k  e.  ( 0 ... n ) ,  ( f `  k
) ,  0 ) )
55 iftrue 3878 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... n )  ->  if ( k  e.  ( 0 ... n ) ,  ( f `  k ) ,  0 )  =  ( f `
 k ) )
5654, 55eqtrd 2505 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... n )  ->  (
( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) `  k
)  =  ( f `
 k ) )
5752, 56sylan9eq 2525 . . . . . . . . . . . . . 14  |-  ( ( a  =  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )  /\  k  e.  ( 0 ... n
) )  ->  (
a `  k )  =  ( f `  k ) )
5857oveq1d 6323 . . . . . . . . . . . . 13  |-  ( ( a  =  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )  /\  k  e.  ( 0 ... n
) )  ->  (
( a `  k
)  x.  ( z ^ k ) )  =  ( ( f `
 k )  x.  ( z ^ k
) ) )
5958sumeq2dv 13846 . . . . . . . . . . . 12  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) )  =  sum_ k  e.  ( 0 ... n
) ( ( f `
 k )  x.  ( z ^ k
) ) )
6059mpteq2dv 4483 . . . . . . . . . . 11  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) ) )
6160eqeq2d 2481 . . . . . . . . . 10  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( f `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) ) ) )
6251, 61anbi12d 725 . . . . . . . . 9  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( ( ( a " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) ) )  <-> 
( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( f `
 k )  x.  ( z ^ k
) ) ) ) ) )
6362rspcev 3136 . . . . . . . 8  |-  ( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  /\  ( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) ) ) )  ->  E. a  e.  (
( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) ) ) )
6425, 48, 49, 63syl12anc 1290 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) ) ) )
65 eqeq1 2475 . . . . . . . . 9  |-  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  ->  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
6665anbi2d 718 . . . . . . . 8  |-  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  ->  (
( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  ( (
a " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) ) ) ) )
6766rexbidv 2892 . . . . . . 7  |-  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  ->  ( E. a  e.  (
( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  <->  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) ) ) ) )
6864, 67syl5ibrcom 230 . . . . . 6  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  ->  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
6968rexlimdva 2871 . . . . 5  |-  ( ( S  C_  CC  /\  n  e.  NN0 )  ->  ( E. f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  ->  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
7069reximdva 2858 . . . 4  |-  ( S 
C_  CC  ->  ( E. n  e.  NN0  E. f  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
7170imdistani 704 . . 3  |-  ( ( S  C_  CC  /\  E. n  e.  NN0  E. f  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) ) )  ->  ( S  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
721, 71sylbi 200 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( S  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
73 simpr 468 . . . . . 6  |-  ( ( ( a " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )
7473reximi 2852 . . . . 5  |-  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  E. a  e.  (
( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
7574reximi 2852 . . . 4  |-  ( E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
7675anim2i 579 . . 3  |-  ( ( S  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
77 elply 23228 . . 3  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
7876, 77sylibr 217 . 2  |-  ( ( S  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )  ->  F  e.  (Poly `  S ) )
7972, 78impbii 192 1  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   _Vcvv 3031    u. cun 3388    C_ wss 3390   ifcif 3872   {csn 3959   class class class wbr 4395    |-> cmpt 4454   "cima 4842   -->wf 5585   ` cfv 5589  (class class class)co 6308    ^m cmap 7490   CCcc 9555   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    <_ cle 9694   NN0cn0 10893   ZZ>=cuz 11182   ...cfz 11810   ^cexp 12310   sum_csu 13829  Polycply 23217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-seq 12252  df-sum 13830  df-ply 23221
This theorem is referenced by:  plyadd  23250  plymul  23251  coeeu  23258  dgrlem  23262  coeid  23271
  Copyright terms: Public domain W3C validator