Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddn0 Structured version   Unicode version

Theorem elpaddn0 35625
Description: Member of projective subspace sum of nonempty sets. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l  |-  .<_  =  ( le `  K )
paddfval.j  |-  .\/  =  ( join `  K )
paddfval.a  |-  A  =  ( Atoms `  K )
paddfval.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
elpaddn0  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  ( X  .+  Y )  <-> 
( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) ) )
Distinct variable groups:    r, q, K    X, q    Y, q, r    S, q, r    A, q, r    .\/ , q, r    .<_ , q, r    X, r
Allowed substitution hints:    .+ ( r, q)

Proof of Theorem elpaddn0
StepHypRef Expression
1 paddfval.l . . . 4  |-  .<_  =  ( le `  K )
2 paddfval.j . . . 4  |-  .\/  =  ( join `  K )
3 paddfval.a . . . 4  |-  A  =  ( Atoms `  K )
4 paddfval.p . . . 4  |-  .+  =  ( +P `  K
)
51, 2, 3, 4elpadd 35624 . . 3  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( S  e.  ( X  .+  Y )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) ) ) )
65adantr 465 . 2  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  ( X  .+  Y )  <-> 
( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r
) ) ) ) )
7 simpl2 1000 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  X  C_  A )
87sseld 3498 . . . . 5  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  X  ->  S  e.  A ) )
9 simpll1 1035 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  X
)  /\  r  e.  Y )  ->  K  e.  Lat )
10 ssel2 3494 . . . . . . . . . . . . . . . 16  |-  ( ( X  C_  A  /\  S  e.  X )  ->  S  e.  A )
11103ad2antl2 1159 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  X )  ->  S  e.  A )
1211adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  X
)  /\  r  e.  Y )  ->  S  e.  A )
13 eqid 2457 . . . . . . . . . . . . . . 15  |-  ( Base `  K )  =  (
Base `  K )
1413, 3atbase 35115 . . . . . . . . . . . . . 14  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1512, 14syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  X
)  /\  r  e.  Y )  ->  S  e.  ( Base `  K
) )
16 simpl3 1001 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  X )  ->  Y  C_  A )
1716sselda 3499 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  X
)  /\  r  e.  Y )  ->  r  e.  A )
1813, 3atbase 35115 . . . . . . . . . . . . . 14  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
1917, 18syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  X
)  /\  r  e.  Y )  ->  r  e.  ( Base `  K
) )
2013, 1, 2latlej1 15816 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  S  e.  ( Base `  K )  /\  r  e.  ( Base `  K
) )  ->  S  .<_  ( S  .\/  r
) )
219, 15, 19, 20syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  X
)  /\  r  e.  Y )  ->  S  .<_  ( S  .\/  r
) )
2221reximdva0 3805 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  X
)  /\  Y  =/=  (/) )  ->  E. r  e.  Y  S  .<_  ( S  .\/  r ) )
2322exp31 604 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( S  e.  X  ->  ( Y  =/=  (/)  ->  E. r  e.  Y  S  .<_  ( S  .\/  r ) ) ) )
2423com23 78 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( Y  =/=  (/)  ->  ( S  e.  X  ->  E. r  e.  Y  S  .<_  ( S  .\/  r ) ) ) )
2524imp 429 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  Y  =/=  (/) )  ->  ( S  e.  X  ->  E. r  e.  Y  S  .<_  ( S  .\/  r
) ) )
2625ancld 553 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  Y  =/=  (/) )  ->  ( S  e.  X  ->  ( S  e.  X  /\  E. r  e.  Y  S  .<_  ( S  .\/  r
) ) ) )
27 oveq1 6303 . . . . . . . . . 10  |-  ( q  =  S  ->  (
q  .\/  r )  =  ( S  .\/  r ) )
2827breq2d 4468 . . . . . . . . 9  |-  ( q  =  S  ->  ( S  .<_  ( q  .\/  r )  <->  S  .<_  ( S  .\/  r ) ) )
2928rexbidv 2968 . . . . . . . 8  |-  ( q  =  S  ->  ( E. r  e.  Y  S  .<_  ( q  .\/  r )  <->  E. r  e.  Y  S  .<_  ( S  .\/  r ) ) )
3029rspcev 3210 . . . . . . 7  |-  ( ( S  e.  X  /\  E. r  e.  Y  S  .<_  ( S  .\/  r
) )  ->  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) )
3126, 30syl6 33 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  Y  =/=  (/) )  ->  ( S  e.  X  ->  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r
) ) )
3231adantrl 715 . . . . 5  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  X  ->  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) )
338, 32jcad 533 . . . 4  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  X  ->  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) ) )
34 simpl3 1001 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  Y  C_  A )
3534sseld 3498 . . . . 5  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  Y  ->  S  e.  A ) )
36 simpll1 1035 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  q  e.  X
)  /\  S  e.  Y )  ->  K  e.  Lat )
37 ssel2 3494 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  C_  A  /\  q  e.  X )  ->  q  e.  A )
38373ad2antl2 1159 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  q  e.  X )  ->  q  e.  A )
3938adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  q  e.  X
)  /\  S  e.  Y )  ->  q  e.  A )
4013, 3atbase 35115 . . . . . . . . . . . . . . . 16  |-  ( q  e.  A  ->  q  e.  ( Base `  K
) )
4139, 40syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  q  e.  X
)  /\  S  e.  Y )  ->  q  e.  ( Base `  K
) )
42 simpl3 1001 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  q  e.  X )  ->  Y  C_  A )
4342sselda 3499 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  q  e.  X
)  /\  S  e.  Y )  ->  S  e.  A )
4443, 14syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  q  e.  X
)  /\  S  e.  Y )  ->  S  e.  ( Base `  K
) )
4513, 1, 2latlej2 15817 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  q  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) )  ->  S  .<_  ( q  .\/  S
) )
4636, 41, 44, 45syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. 
Lat  /\  X  C_  A  /\  Y  C_  A )  /\  q  e.  X
)  /\  S  e.  Y )  ->  S  .<_  ( q  .\/  S
) )
4746ex 434 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  q  e.  X )  ->  ( S  e.  Y  ->  S  .<_  ( q  .\/  S ) ) )
4847ancld 553 . . . . . . . . . . . 12  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  q  e.  X )  ->  ( S  e.  Y  ->  ( S  e.  Y  /\  S  .<_  ( q 
.\/  S ) ) ) )
49 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( r  =  S  ->  (
q  .\/  r )  =  ( q  .\/  S ) )
5049breq2d 4468 . . . . . . . . . . . . 13  |-  ( r  =  S  ->  ( S  .<_  ( q  .\/  r )  <->  S  .<_  ( q  .\/  S ) ) )
5150rspcev 3210 . . . . . . . . . . . 12  |-  ( ( S  e.  Y  /\  S  .<_  ( q  .\/  S ) )  ->  E. r  e.  Y  S  .<_  ( q  .\/  r ) )
5248, 51syl6 33 . . . . . . . . . . 11  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  q  e.  X )  ->  ( S  e.  Y  ->  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) )
5352impancom 440 . . . . . . . . . 10  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  Y )  ->  ( q  e.  X  ->  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) )
5453ancld 553 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  Y )  ->  ( q  e.  X  ->  ( q  e.  X  /\  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) ) )
5554eximdv 1711 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  Y )  ->  ( E. q  q  e.  X  ->  E. q
( q  e.  X  /\  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) ) )
56 n0 3803 . . . . . . . 8  |-  ( X  =/=  (/)  <->  E. q  q  e.  X )
57 df-rex 2813 . . . . . . . 8  |-  ( E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r
)  <->  E. q ( q  e.  X  /\  E. r  e.  Y  S  .<_  ( q  .\/  r
) ) )
5855, 56, 573imtr4g 270 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  S  e.  Y )  ->  ( X  =/=  (/)  ->  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) )
5958impancom 440 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  X  =/=  (/) )  ->  ( S  e.  Y  ->  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r
) ) )
6059adantrr 716 . . . . 5  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  Y  ->  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) )
6135, 60jcad 533 . . . 4  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  Y  ->  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) ) )
6233, 61jaod 380 . . 3  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( ( S  e.  X  \/  S  e.  Y )  ->  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r
) ) ) )
63 pm4.72 876 . . 3  |-  ( ( ( S  e.  X  \/  S  e.  Y
)  ->  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) )  <->  ( ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r
) )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) ) ) )
6462, 63sylib 196 . 2  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r
) ) ) ) )
656, 64bitr4d 256 1  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  ( X  .+  Y )  <-> 
( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   E.wrex 2808    C_ wss 3471   (/)c0 3793   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   Basecbs 14643   lecple 14718   joincjn 15699   Latclat 15801   Atomscatm 35089   +Pcpadd 35620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-lub 15730  df-join 15732  df-lat 15802  df-ats 35093  df-padd 35621
This theorem is referenced by:  paddvaln0N  35626  elpaddri  35627  elpaddat  35629  paddasslem15  35659  paddasslem16  35660  pmodlem2  35672  pmapjat1  35678
  Copyright terms: Public domain W3C validator