Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd0 Structured version   Visualization version   Unicode version

Theorem elpadd0 33445
Description: Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
padd0.a  |-  A  =  ( Atoms `  K )
padd0.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
elpadd0  |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  -.  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  ( X  .+  Y )  <-> 
( S  e.  X  \/  S  e.  Y
) ) )

Proof of Theorem elpadd0
Dummy variables  q 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neanior 2735 . . . 4  |-  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  <->  -.  ( X  =  (/)  \/  Y  =  (/) ) )
21bicomi 207 . . 3  |-  ( -.  ( X  =  (/)  \/  Y  =  (/) )  <->  ( X  =/=  (/)  /\  Y  =/=  (/) ) )
32con1bii 338 . 2  |-  ( -.  ( X  =/=  (/)  /\  Y  =/=  (/) )  <->  ( X  =  (/)  \/  Y  =  (/) ) )
4 eqid 2471 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
5 eqid 2471 . . . 4  |-  ( join `  K )  =  (
join `  K )
6 padd0.a . . . 4  |-  A  =  ( Atoms `  K )
7 padd0.p . . . 4  |-  .+  =  ( +P `  K
)
84, 5, 6, 7elpadd 33435 . . 3  |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( S  e.  ( X  .+  Y )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r ) ) ) ) )
9 rex0 3737 . . . . . . . 8  |-  -.  E. q  e.  (/)  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r )
10 rexeq 2974 . . . . . . . 8  |-  ( X  =  (/)  ->  ( E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r )  <->  E. q  e.  (/)  E. r  e.  Y  S ( le
`  K ) ( q ( join `  K
) r ) ) )
119, 10mtbiri 310 . . . . . . 7  |-  ( X  =  (/)  ->  -.  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) )
12 rex0 3737 . . . . . . . . . 10  |-  -.  E. r  e.  (/)  S ( le `  K ) ( q ( join `  K ) r )
1312a1i 11 . . . . . . . . 9  |-  ( q  e.  X  ->  -.  E. r  e.  (/)  S ( le `  K ) ( q ( join `  K ) r ) )
1413nrex 2841 . . . . . . . 8  |-  -.  E. q  e.  X  E. r  e.  (/)  S ( le `  K ) ( q ( join `  K ) r )
15 rexeq 2974 . . . . . . . . 9  |-  ( Y  =  (/)  ->  ( E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r )  <->  E. r  e.  (/)  S ( le
`  K ) ( q ( join `  K
) r ) ) )
1615rexbidv 2892 . . . . . . . 8  |-  ( Y  =  (/)  ->  ( E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r )  <->  E. q  e.  X  E. r  e.  (/)  S ( le
`  K ) ( q ( join `  K
) r ) ) )
1714, 16mtbiri 310 . . . . . . 7  |-  ( Y  =  (/)  ->  -.  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) )
1811, 17jaoi 386 . . . . . 6  |-  ( ( X  =  (/)  \/  Y  =  (/) )  ->  -.  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) )
1918intnand 930 . . . . 5  |-  ( ( X  =  (/)  \/  Y  =  (/) )  ->  -.  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r ) ) )
20 biorf 412 . . . . 5  |-  ( -.  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r ) )  ->  ( ( S  e.  X  \/  S  e.  Y )  <->  ( ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) )  \/  ( S  e.  X  \/  S  e.  Y
) ) ) )
2119, 20syl 17 . . . 4  |-  ( ( X  =  (/)  \/  Y  =  (/) )  ->  (
( S  e.  X  \/  S  e.  Y
)  <->  ( ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) )  \/  ( S  e.  X  \/  S  e.  Y
) ) ) )
22 orcom 394 . . . 4  |-  ( ( ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r ) )  \/  ( S  e.  X  \/  S  e.  Y ) )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r ) ) ) )
2321, 22syl6rbb 270 . . 3  |-  ( ( X  =  (/)  \/  Y  =  (/) )  ->  (
( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) ) )  <-> 
( S  e.  X  \/  S  e.  Y
) ) )
248, 23sylan9bb 714 . 2  |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =  (/)  \/  Y  =  (/) ) )  -> 
( S  e.  ( X  .+  Y )  <-> 
( S  e.  X  \/  S  e.  Y
) ) )
253, 24sylan2b 483 1  |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  -.  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  ( X  .+  Y )  <-> 
( S  e.  X  \/  S  e.  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   E.wrex 2757    C_ wss 3390   (/)c0 3722   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   lecple 15275   joincjn 16267   Atomscatm 32900   +Pcpadd 33431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-padd 33432
This theorem is referenced by:  paddval0  33446
  Copyright terms: Public domain W3C validator