Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd Structured version   Visualization version   Unicode version

Theorem elpadd 33435
Description: Member of a projective subspace sum. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddfval.l  |-  .<_  =  ( le `  K )
paddfval.j  |-  .\/  =  ( join `  K )
paddfval.a  |-  A  =  ( Atoms `  K )
paddfval.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
elpadd  |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( S  e.  ( X  .+  Y )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) ) ) )
Distinct variable groups:    r, q, K    X, q    Y, q, r    S, q, r
Allowed substitution hints:    A( r, q)    B( r, q)    .+ ( r, q)    .\/ ( r, q)    .<_ ( r, q)    X( r)

Proof of Theorem elpadd
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 paddfval.l . . . 4  |-  .<_  =  ( le `  K )
2 paddfval.j . . . 4  |-  .\/  =  ( join `  K )
3 paddfval.a . . . 4  |-  A  =  ( Atoms `  K )
4 paddfval.p . . . 4  |-  .+  =  ( +P `  K
)
51, 2, 3, 4paddval 33434 . . 3  |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( ( X  u.  Y )  u.  {
p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) } ) )
65eleq2d 2534 . 2  |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( S  e.  ( X  .+  Y )  <->  S  e.  ( ( X  u.  Y )  u.  {
p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) } ) ) )
7 elun 3565 . . 3  |-  ( S  e.  ( ( X  u.  Y )  u. 
{ p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) } )  <-> 
( S  e.  ( X  u.  Y )  \/  S  e.  {
p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) } ) )
8 elun 3565 . . . 4  |-  ( S  e.  ( X  u.  Y )  <->  ( S  e.  X  \/  S  e.  Y ) )
9 breq1 4398 . . . . . 6  |-  ( p  =  S  ->  (
p  .<_  ( q  .\/  r )  <->  S  .<_  ( q  .\/  r ) ) )
1092rexbidv 2897 . . . . 5  |-  ( p  =  S  ->  ( E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r )  <->  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) )
1110elrab 3184 . . . 4  |-  ( S  e.  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) }  <->  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) )
128, 11orbi12i 530 . . 3  |-  ( ( S  e.  ( X  u.  Y )  \/  S  e.  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r
) } )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) ) )
137, 12bitri 257 . 2  |-  ( S  e.  ( ( X  u.  Y )  u. 
{ p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) } )  <-> 
( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r
) ) ) )
146, 13syl6bb 269 1  |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( S  e.  ( X  .+  Y )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   E.wrex 2757   {crab 2760    u. cun 3388    C_ wss 3390   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   lecple 15275   joincjn 16267   Atomscatm 32900   +Pcpadd 33431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-padd 33432
This theorem is referenced by:  elpaddn0  33436  elpadd0  33445  paddss1  33453  paddss2  33454  paddidm  33477  paddclN  33478  pmapjoin  33488
  Copyright terms: Public domain W3C validator