MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovolmr Structured version   Unicode version

Theorem elovolmr 22053
Description: Sufficient condition for elementhood in the set  M. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypotheses
Ref Expression
ovolval.1  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
ovolval.2  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
Assertion
Ref Expression
elovolmr  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  ->  sup ( ran  S ,  RR* ,  <  )  e.  M )
Distinct variable groups:    y, f, A    f, F    S, f,
y
Allowed substitution hints:    F( y)    M( y, f)

Proof of Theorem elovolmr
StepHypRef Expression
1 reex 9572 . . . . . 6  |-  RR  e.  _V
21, 1xpex 6577 . . . . 5  |-  ( RR 
X.  RR )  e. 
_V
32inex2 4579 . . . 4  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
4 nnex 10537 . . . 4  |-  NN  e.  _V
53, 4elmap 7440 . . 3  |-  ( F  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
6 ovolval.2 . . . . . . . . 9  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
7 id 22 . . . . . . . . . . . 12  |-  ( f  =  F  ->  f  =  F )
87eqcomd 2462 . . . . . . . . . . 11  |-  ( f  =  F  ->  F  =  f )
98coeq2d 5154 . . . . . . . . . 10  |-  ( f  =  F  ->  (
( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  f )
)
109seqeq3d 12097 . . . . . . . . 9  |-  ( f  =  F  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  F
) )  =  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) )
116, 10syl5eq 2507 . . . . . . . 8  |-  ( f  =  F  ->  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) )
1211rneqd 5219 . . . . . . 7  |-  ( f  =  F  ->  ran  S  =  ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) )
1312supeq1d 7897 . . . . . 6  |-  ( f  =  F  ->  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) )
1413biantrud 505 . . . . 5  |-  ( f  =  F  ->  ( A  C_  U. ran  ( (,)  o.  f )  <->  ( A  C_ 
U. ran  ( (,)  o.  f )  /\  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
15 coeq2 5150 . . . . . . . 8  |-  ( f  =  F  ->  ( (,)  o.  f )  =  ( (,)  o.  F
) )
1615rneqd 5219 . . . . . . 7  |-  ( f  =  F  ->  ran  ( (,)  o.  f )  =  ran  ( (,) 
o.  F ) )
1716unieqd 4245 . . . . . 6  |-  ( f  =  F  ->  U. ran  ( (,)  o.  f )  =  U. ran  ( (,)  o.  F ) )
1817sseq2d 3517 . . . . 5  |-  ( f  =  F  ->  ( A  C_  U. ran  ( (,)  o.  f )  <->  A  C_  U. ran  ( (,)  o.  F ) ) )
1914, 18bitr3d 255 . . . 4  |-  ( f  =  F  ->  (
( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran 
S ,  RR* ,  <  )  =  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <-> 
A  C_  U. ran  ( (,)  o.  F ) ) )
2019rspcev 3207 . . 3  |-  ( ( F  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A  C_  U.
ran  ( (,)  o.  F ) )  ->  E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
215, 20sylanbr 471 . 2  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  ->  E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
22 ovolval.1 . . 3  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
2322elovolm 22052 . 2  |-  ( sup ( ran  S ,  RR* ,  <  )  e.  M  <->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
2421, 23sylibr 212 1  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  ->  sup ( ran  S ,  RR* ,  <  )  e.  M )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   E.wrex 2805   {crab 2808    i^i cin 3460    C_ wss 3461   U.cuni 4235    X. cxp 4986   ran crn 4989    o. ccom 4992   -->wf 5566  (class class class)co 6270    ^m cmap 7412   supcsup 7892   RRcr 9480   1c1 9482    + caddc 9484   RR*cxr 9616    < clt 9617    <_ cle 9618    - cmin 9796   NNcn 10531   (,)cioo 11532    seqcseq 12089   abscabs 13149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-ico 11538  df-fz 11676  df-seq 12090  df-exp 12149  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151
This theorem is referenced by:  ovollb  22056  ovolshftlem1  22086
  Copyright terms: Public domain W3C validator