MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovolm Structured version   Unicode version

Theorem elovolm 22363
Description: Elementhood in the set  M of approximations to the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolval.1  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
Assertion
Ref Expression
elovolm  |-  ( B  e.  M  <->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
Distinct variable groups:    y, f, A    B, f, y
Allowed substitution hints:    M( y, f)

Proof of Theorem elovolm
StepHypRef Expression
1 eqeq1 2426 . . . . 5  |-  ( y  =  B  ->  (
y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  )  <->  B  =  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  ) ) )
21anbi2d 708 . . . 4  |-  ( y  =  B  ->  (
( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <-> 
( A  C_  U. ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
32rexbidv 2872 . . 3  |-  ( y  =  B  ->  ( E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <->  E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
4 ovolval.1 . . 3  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
53, 4elrab2 3166 . 2  |-  ( B  e.  M  <->  ( B  e.  RR*  /\  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) ) )
6 reex 9574 . . . . . . . . . . . . 13  |-  RR  e.  _V
76, 6xpex 6546 . . . . . . . . . . . 12  |-  ( RR 
X.  RR )  e. 
_V
87inex2 4502 . . . . . . . . . . 11  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
9 nnex 10559 . . . . . . . . . . 11  |-  NN  e.  _V
108, 9elmap 7448 . . . . . . . . . 10  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
11 eqid 2422 . . . . . . . . . . 11  |-  ( ( abs  o.  -  )  o.  f )  =  ( ( abs  o.  -  )  o.  f )
12 eqid 2422 . . . . . . . . . . 11  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
1311, 12ovolsf 22360 . . . . . . . . . 10  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) : NN --> ( 0 [,) +oo ) )
1410, 13sylbi 198 . . . . . . . . 9  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) : NN --> ( 0 [,) +oo ) )
15 icossxr 11663 . . . . . . . . 9  |-  ( 0 [,) +oo )  C_  RR*
16 fss 5690 . . . . . . . . 9  |-  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) : NN --> ( 0 [,) +oo )  /\  (
0 [,) +oo )  C_ 
RR* )  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) : NN --> RR* )
1714, 15, 16sylancl 666 . . . . . . . 8  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) : NN --> RR* )
18 frn 5688 . . . . . . . 8  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) : NN --> RR* 
->  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) )  C_  RR* )
19 supxrcl 11544 . . . . . . . 8  |-  ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) )  C_  RR* 
->  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  )  e.  RR* )
2017, 18, 193syl 18 . . . . . . 7  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  )  e.  RR* )
21 eleq1 2488 . . . . . . 7  |-  ( B  =  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  )  -> 
( B  e.  RR*  <->  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  e. 
RR* ) )
2220, 21syl5ibrcom 225 . . . . . 6  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  )  ->  B  e.  RR* ) )
2322imp 430 . . . . 5  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )  ->  B  e.  RR* )
2423adantrl 720 . . . 4  |-  ( ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) )  ->  B  e.  RR* )
2524rexlimiva 2846 . . 3  |-  ( E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )  ->  B  e.  RR* )
2625pm4.71ri 637 . 2  |-  ( E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )  <->  ( B  e.  RR*  /\  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) ) )
275, 26bitr4i 255 1  |-  ( B  e.  M  <->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   E.wrex 2709   {crab 2712    i^i cin 3371    C_ wss 3372   U.cuni 4155    X. cxp 4787   ran crn 4790    o. ccom 4793   -->wf 5533  (class class class)co 6242    ^m cmap 7420   supcsup 7900   RRcr 9482   0cc0 9483   1c1 9484    + caddc 9486   +oocpnf 9616   RR*cxr 9618    < clt 9619    <_ cle 9620    - cmin 9804   NNcn 10553   (,)cioo 11579   [,)cico 11581    seqcseq 12156   abscabs 13234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-nel 2596  df-ral 2713  df-rex 2714  df-reu 2715  df-rmo 2716  df-rab 2717  df-v 3018  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-tp 3939  df-op 3941  df-uni 4156  df-iun 4237  df-br 4360  df-opab 4419  df-mpt 4420  df-tr 4455  df-eprel 4700  df-id 4704  df-po 4710  df-so 4711  df-fr 4748  df-we 4750  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-pred 5335  df-ord 5381  df-on 5382  df-lim 5383  df-suc 5384  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-riota 6204  df-ov 6245  df-oprab 6246  df-mpt2 6247  df-om 6644  df-1st 6744  df-2nd 6745  df-wrecs 6976  df-recs 7038  df-rdg 7076  df-er 7311  df-map 7422  df-en 7518  df-dom 7519  df-sdom 7520  df-sup 7902  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9806  df-neg 9807  df-div 10214  df-nn 10554  df-2 10612  df-3 10613  df-n0 10814  df-z 10882  df-uz 11104  df-rp 11247  df-ico 11585  df-fz 11729  df-seq 12157  df-exp 12216  df-cj 13099  df-re 13100  df-im 13101  df-sqrt 13235  df-abs 13236
This theorem is referenced by:  elovolmr  22364  ovolmge0  22365  ovolicc2  22411
  Copyright terms: Public domain W3C validator