MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpt3imp Structured version   Unicode version

Theorem elovmpt3imp 6515
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands must be sets. Remark: a function which is the result of an operation can be regared as operation with 3 operands - therefore the abbreviation "mpt3" is used in the label. (Contributed by AV, 16-May-2019.)
Hypothesis
Ref Expression
elovmpt3imp.o  |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  ( z  e.  M  |->  B ) )
Assertion
Ref Expression
elovmpt3imp  |-  ( A  e.  ( ( X O Y ) `  Z )  ->  ( X  e.  _V  /\  Y  e.  _V ) )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y, z)    B( x, y, z)    M( x, y, z)    O( x, y, z)    X( x, y, z)    Y( x, y, z)    Z( x, y, z)

Proof of Theorem elovmpt3imp
StepHypRef Expression
1 ne0i 3774 . 2  |-  ( A  e.  ( ( X O Y ) `  Z )  ->  (
( X O Y ) `  Z )  =/=  (/) )
2 ax-1 6 . . 3  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( ( X O Y ) `  Z )  =/=  (/)  ->  ( X  e.  _V  /\  Y  e.  _V ) ) )
3 elovmpt3imp.o . . . . 5  |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  ( z  e.  M  |->  B ) )
43mpt2ndm0 6498 . . . 4  |-  ( -.  ( X  e.  _V  /\  Y  e.  _V )  ->  ( X O Y )  =  (/) )
5 fveq1 5852 . . . . 5  |-  ( ( X O Y )  =  (/)  ->  ( ( X O Y ) `
 Z )  =  ( (/) `  Z ) )
6 0fv 5886 . . . . 5  |-  ( (/) `  Z )  =  (/)
75, 6syl6eq 2498 . . . 4  |-  ( ( X O Y )  =  (/)  ->  ( ( X O Y ) `
 Z )  =  (/) )
8 eqneqall 2648 . . . 4  |-  ( ( ( X O Y ) `  Z )  =  (/)  ->  ( ( ( X O Y ) `  Z )  =/=  (/)  ->  ( X  e.  _V  /\  Y  e. 
_V ) ) )
94, 7, 83syl 20 . . 3  |-  ( -.  ( X  e.  _V  /\  Y  e.  _V )  ->  ( ( ( X O Y ) `  Z )  =/=  (/)  ->  ( X  e.  _V  /\  Y  e.  _V ) ) )
102, 9pm2.61i 164 . 2  |-  ( ( ( X O Y ) `  Z )  =/=  (/)  ->  ( X  e.  _V  /\  Y  e. 
_V ) )
111, 10syl 16 1  |-  ( A  e.  ( ( X O Y ) `  Z )  ->  ( X  e.  _V  /\  Y  e.  _V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802    =/= wne 2636   _Vcvv 3093   (/)c0 3768    |-> cmpt 4492   ` cfv 5575  (class class class)co 6278    |-> cmpt2 6280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-nul 3769  df-if 3924  df-sn 4012  df-pr 4014  df-op 4018  df-uni 4232  df-br 4435  df-opab 4493  df-xp 4992  df-dm 4996  df-iota 5538  df-fv 5583  df-ov 6281  df-oprab 6282  df-mpt2 6283
This theorem is referenced by:  elovmpt3rab1  6518  elovmptnn0wrd  12560
  Copyright terms: Public domain W3C validator