MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eloprabi Structured version   Visualization version   Unicode version

Theorem eloprabi 6874
Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabi.1  |-  ( x  =  ( 1st `  ( 1st `  A ) )  ->  ( ph  <->  ps )
)
eloprabi.2  |-  ( y  =  ( 2nd `  ( 1st `  A ) )  ->  ( ps  <->  ch )
)
eloprabi.3  |-  ( z  =  ( 2nd `  A
)  ->  ( ch  <->  th ) )
Assertion
Ref Expression
eloprabi  |-  ( A  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  ->  th )
Distinct variable groups:    x, y,
z, A    th, x, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)    ch( x, y, z)

Proof of Theorem eloprabi
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2475 . . . . . 6  |-  ( w  =  A  ->  (
w  =  <. <. x ,  y >. ,  z
>. 
<->  A  =  <. <. x ,  y >. ,  z
>. ) )
21anbi1d 719 . . . . 5  |-  ( w  =  A  ->  (
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) 
<->  ( A  =  <. <.
x ,  y >. ,  z >.  /\  ph ) ) )
323exbidv 1779 . . . 4  |-  ( w  =  A  ->  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. x E. y E. z ( A  =  <. <. x ,  y >. ,  z
>.  /\  ph ) ) )
4 df-oprab 6312 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
53, 4elab2g 3175 . . 3  |-  ( A  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  ->  ( A  e.  { <. <.
x ,  y >. ,  z >.  |  ph } 
<->  E. x E. y E. z ( A  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) ) )
65ibi 249 . 2  |-  ( A  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  ->  E. x E. y E. z ( A  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
7 opex 4664 . . . . . . . . . . 11  |-  <. x ,  y >.  e.  _V
8 vex 3034 . . . . . . . . . . 11  |-  z  e. 
_V
97, 8op1std 6822 . . . . . . . . . 10  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( 1st `  A
)  =  <. x ,  y >. )
109fveq2d 5883 . . . . . . . . 9  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( 1st `  ( 1st `  A ) )  =  ( 1st `  <. x ,  y >. )
)
11 vex 3034 . . . . . . . . . 10  |-  x  e. 
_V
12 vex 3034 . . . . . . . . . 10  |-  y  e. 
_V
1311, 12op1st 6820 . . . . . . . . 9  |-  ( 1st `  <. x ,  y
>. )  =  x
1410, 13syl6req 2522 . . . . . . . 8  |-  ( A  =  <. <. x ,  y
>. ,  z >.  ->  x  =  ( 1st `  ( 1st `  A
) ) )
15 eloprabi.1 . . . . . . . 8  |-  ( x  =  ( 1st `  ( 1st `  A ) )  ->  ( ph  <->  ps )
)
1614, 15syl 17 . . . . . . 7  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( ph  <->  ps ) )
179fveq2d 5883 . . . . . . . . 9  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( 2nd `  ( 1st `  A ) )  =  ( 2nd `  <. x ,  y >. )
)
1811, 12op2nd 6821 . . . . . . . . 9  |-  ( 2nd `  <. x ,  y
>. )  =  y
1917, 18syl6req 2522 . . . . . . . 8  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
y  =  ( 2nd `  ( 1st `  A
) ) )
20 eloprabi.2 . . . . . . . 8  |-  ( y  =  ( 2nd `  ( 1st `  A ) )  ->  ( ps  <->  ch )
)
2119, 20syl 17 . . . . . . 7  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( ps  <->  ch )
)
227, 8op2ndd 6823 . . . . . . . . 9  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( 2nd `  A
)  =  z )
2322eqcomd 2477 . . . . . . . 8  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
z  =  ( 2nd `  A ) )
24 eloprabi.3 . . . . . . . 8  |-  ( z  =  ( 2nd `  A
)  ->  ( ch  <->  th ) )
2523, 24syl 17 . . . . . . 7  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( ch  <->  th )
)
2616, 21, 253bitrd 287 . . . . . 6  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( ph  <->  th ) )
2726biimpa 492 . . . . 5  |-  ( ( A  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  th )
2827exlimiv 1784 . . . 4  |-  ( E. z ( A  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  th )
2928exlimiv 1784 . . 3  |-  ( E. y E. z ( A  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  th )
3029exlimiv 1784 . 2  |-  ( E. x E. y E. z ( A  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  th )
316, 30syl 17 1  |-  ( A  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   <.cop 3965   ` cfv 5589   {coprab 6309   1stc1st 6810   2ndc2nd 6811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-iota 5553  df-fun 5591  df-fv 5597  df-oprab 6312  df-1st 6812  df-2nd 6813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator