MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eloprabi Structured version   Unicode version

Theorem eloprabi 6835
Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabi.1  |-  ( x  =  ( 1st `  ( 1st `  A ) )  ->  ( ph  <->  ps )
)
eloprabi.2  |-  ( y  =  ( 2nd `  ( 1st `  A ) )  ->  ( ps  <->  ch )
)
eloprabi.3  |-  ( z  =  ( 2nd `  A
)  ->  ( ch  <->  th ) )
Assertion
Ref Expression
eloprabi  |-  ( A  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  ->  th )
Distinct variable groups:    x, y,
z, A    th, x, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)    ch( x, y, z)

Proof of Theorem eloprabi
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2458 . . . . . 6  |-  ( w  =  A  ->  (
w  =  <. <. x ,  y >. ,  z
>. 
<->  A  =  <. <. x ,  y >. ,  z
>. ) )
21anbi1d 702 . . . . 5  |-  ( w  =  A  ->  (
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) 
<->  ( A  =  <. <.
x ,  y >. ,  z >.  /\  ph ) ) )
323exbidv 1722 . . . 4  |-  ( w  =  A  ->  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. x E. y E. z ( A  =  <. <. x ,  y >. ,  z
>.  /\  ph ) ) )
4 df-oprab 6274 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
53, 4elab2g 3245 . . 3  |-  ( A  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  ->  ( A  e.  { <. <.
x ,  y >. ,  z >.  |  ph } 
<->  E. x E. y E. z ( A  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) ) )
65ibi 241 . 2  |-  ( A  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  ->  E. x E. y E. z ( A  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
7 opex 4701 . . . . . . . . . . 11  |-  <. x ,  y >.  e.  _V
8 vex 3109 . . . . . . . . . . 11  |-  z  e. 
_V
97, 8op1std 6783 . . . . . . . . . 10  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( 1st `  A
)  =  <. x ,  y >. )
109fveq2d 5852 . . . . . . . . 9  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( 1st `  ( 1st `  A ) )  =  ( 1st `  <. x ,  y >. )
)
11 vex 3109 . . . . . . . . . 10  |-  x  e. 
_V
12 vex 3109 . . . . . . . . . 10  |-  y  e. 
_V
1311, 12op1st 6781 . . . . . . . . 9  |-  ( 1st `  <. x ,  y
>. )  =  x
1410, 13syl6req 2512 . . . . . . . 8  |-  ( A  =  <. <. x ,  y
>. ,  z >.  ->  x  =  ( 1st `  ( 1st `  A
) ) )
15 eloprabi.1 . . . . . . . 8  |-  ( x  =  ( 1st `  ( 1st `  A ) )  ->  ( ph  <->  ps )
)
1614, 15syl 16 . . . . . . 7  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( ph  <->  ps ) )
179fveq2d 5852 . . . . . . . . 9  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( 2nd `  ( 1st `  A ) )  =  ( 2nd `  <. x ,  y >. )
)
1811, 12op2nd 6782 . . . . . . . . 9  |-  ( 2nd `  <. x ,  y
>. )  =  y
1917, 18syl6req 2512 . . . . . . . 8  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
y  =  ( 2nd `  ( 1st `  A
) ) )
20 eloprabi.2 . . . . . . . 8  |-  ( y  =  ( 2nd `  ( 1st `  A ) )  ->  ( ps  <->  ch )
)
2119, 20syl 16 . . . . . . 7  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( ps  <->  ch )
)
227, 8op2ndd 6784 . . . . . . . . 9  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( 2nd `  A
)  =  z )
2322eqcomd 2462 . . . . . . . 8  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
z  =  ( 2nd `  A ) )
24 eloprabi.3 . . . . . . . 8  |-  ( z  =  ( 2nd `  A
)  ->  ( ch  <->  th ) )
2523, 24syl 16 . . . . . . 7  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( ch  <->  th )
)
2616, 21, 253bitrd 279 . . . . . 6  |-  ( A  =  <. <. x ,  y
>. ,  z >.  -> 
( ph  <->  th ) )
2726biimpa 482 . . . . 5  |-  ( ( A  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  th )
2827exlimiv 1727 . . . 4  |-  ( E. z ( A  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  th )
2928exlimiv 1727 . . 3  |-  ( E. y E. z ( A  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  th )
3029exlimiv 1727 . 2  |-  ( E. x E. y E. z ( A  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  th )
316, 30syl 16 1  |-  ( A  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   <.cop 4022   ` cfv 5570   {coprab 6271   1stc1st 6771   2ndc2nd 6772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-iota 5534  df-fun 5572  df-fv 5578  df-oprab 6274  df-1st 6773  df-2nd 6774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator