Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eloprabg Structured version   Unicode version

Theorem eloprabg 6394
 Description: The law of concretion for operation class abstraction. Compare elopab 4724. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabg.1
eloprabg.2
eloprabg.3
Assertion
Ref Expression
eloprabg
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,
Allowed substitution hints:   (,,)   (,,)   (,,)   (,,)   (,,)   (,,)

Proof of Theorem eloprabg
StepHypRef Expression
1 eloprabg.1 . . 3
2 eloprabg.2 . . 3
3 eloprabg.3 . . 3
41, 2, 3syl3an9b 1333 . 2
54eloprabga 6393 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   w3a 982   wceq 1437   wcel 1868  cop 4002  coprab 6302 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pr 4656 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-rab 2784  df-v 3083  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-sn 3997  df-pr 3999  df-op 4003  df-oprab 6305 This theorem is referenced by:  ov  6426  ovg  6445  brbtwn  24913  isnvlem  26212  isphg  26441  fvtransport  30789  brcolinear2  30815  colineardim1  30818  fvray  30898  fvline  30901
 Copyright terms: Public domain W3C validator