Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopaelxp Structured version   Unicode version

Theorem elopaelxp 4918
 Description: Membership in an ordered pair class builder implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018.)
Assertion
Ref Expression
elopaelxp
Distinct variable group:   ,,
Allowed substitution hints:   (,)

Proof of Theorem elopaelxp
StepHypRef Expression
1 simpl 458 . . 3
212eximi 1703 . 2
3 elopab 4720 . 2
4 elvv 4904 . 2
52, 3, 43imtr4i 269 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 370   wceq 1437  wex 1659   wcel 1867  cvv 3078  cop 3999  copab 4474   cxp 4843 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pr 4652 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-v 3080  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-opab 4476  df-xp 4851 This theorem is referenced by:  bropaex12  4919  wlkcompim  25140  clwlkcompim  25378  linedegen  30736  opelopab3  31791
 Copyright terms: Public domain W3C validator