MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnpi Structured version   Unicode version

Theorem elnpi 9263
Description: Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elnpi  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem elnpi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 3081 . 2  |-  ( A  e.  P.  ->  A  e.  _V )
2 simpl1 991 . 2  |-  ( ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C. 
Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) )  ->  A  e.  _V )
3 psseq2 3547 . . . . . 6  |-  ( z  =  A  ->  ( (/)  C.  z  <->  (/)  C.  A )
)
4 psseq1 3546 . . . . . 6  |-  ( z  =  A  ->  (
z  C.  Q.  <->  A  C.  Q. )
)
53, 4anbi12d 710 . . . . 5  |-  ( z  =  A  ->  (
( (/)  C.  z  /\  z  C.  Q. )  <->  ( (/)  C.  A  /\  A  C.  Q. )
) )
6 eleq2 2525 . . . . . . . . 9  |-  ( z  =  A  ->  (
y  e.  z  <->  y  e.  A ) )
76imbi2d 316 . . . . . . . 8  |-  ( z  =  A  ->  (
( y  <Q  x  ->  y  e.  z )  <-> 
( y  <Q  x  ->  y  e.  A ) ) )
87albidv 1680 . . . . . . 7  |-  ( z  =  A  ->  ( A. y ( y  <Q  x  ->  y  e.  z )  <->  A. y ( y 
<Q  x  ->  y  e.  A ) ) )
9 rexeq 3018 . . . . . . 7  |-  ( z  =  A  ->  ( E. y  e.  z  x  <Q  y  <->  E. y  e.  A  x  <Q  y ) )
108, 9anbi12d 710 . . . . . 6  |-  ( z  =  A  ->  (
( A. y ( y  <Q  x  ->  y  e.  z )  /\  E. y  e.  z  x 
<Q  y )  <->  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) )
1110raleqbi1dv 3025 . . . . 5  |-  ( z  =  A  ->  ( A. x  e.  z 
( A. y ( y  <Q  x  ->  y  e.  z )  /\  E. y  e.  z  x 
<Q  y )  <->  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) )
125, 11anbi12d 710 . . . 4  |-  ( z  =  A  ->  (
( ( (/)  C.  z  /\  z  C.  Q. )  /\  A. x  e.  z  ( A. y ( y  <Q  x  ->  y  e.  z )  /\  E. y  e.  z  x 
<Q  y ) )  <->  ( ( (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) ) )
13 df-np 9256 . . . 4  |-  P.  =  { z  |  ( ( (/)  C.  z  /\  z  C.  Q. )  /\  A. x  e.  z  ( A. y ( y 
<Q  x  ->  y  e.  z )  /\  E. y  e.  z  x  <Q  y ) ) }
1412, 13elab2g 3209 . . 3  |-  ( A  e.  _V  ->  ( A  e.  P.  <->  ( ( (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) ) )
15 id 22 . . . . . 6  |-  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  ->  ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )
)
16153expib 1191 . . . . 5  |-  ( A  e.  _V  ->  (
( (/)  C.  A  /\  A  C.  Q. )  -> 
( A  e.  _V  /\  (/)  C.  A  /\  A  C. 
Q. ) ) )
17 3simpc 987 . . . . 5  |-  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  ->  ( (/)  C.  A  /\  A  C.  Q. ) )
1816, 17impbid1 203 . . . 4  |-  ( A  e.  _V  ->  (
( (/)  C.  A  /\  A  C.  Q. )  <->  ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )
) )
1918anbi1d 704 . . 3  |-  ( A  e.  _V  ->  (
( ( (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) )  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) ) )
2014, 19bitrd 253 . 2  |-  ( A  e.  _V  ->  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) ) )
211, 2, 20pm5.21nii 353 1  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965   A.wal 1368    = wceq 1370    e. wcel 1758   A.wral 2796   E.wrex 2797   _Vcvv 3072    C. wpss 3432   (/)c0 3740   class class class wbr 4395   Q.cnq 9125    <Q cltq 9131   P.cnp 9132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-v 3074  df-in 3438  df-ss 3445  df-pss 3447  df-np 9256
This theorem is referenced by:  prn0  9264  prpssnq  9265  prcdnq  9268  prnmax  9270
  Copyright terms: Public domain W3C validator