MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnn1uz2 Structured version   Unicode version

Theorem elnn1uz2 11032
Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
elnn1uz2  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )

Proof of Theorem elnn1uz2
StepHypRef Expression
1 eluz2b3 11029 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
21orbi2i 519 . 2  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  <->  ( N  =  1  \/  ( N  e.  NN  /\  N  =/=  1 ) ) )
3 exmidne 2654 . . 3  |-  ( N  =  1  \/  N  =/=  1 )
4 ordi 859 . . 3  |-  ( ( N  =  1  \/  ( N  e.  NN  /\  N  =/=  1 ) )  <->  ( ( N  =  1  \/  N  e.  NN )  /\  ( N  =  1  \/  N  =/=  1 ) ) )
53, 4mpbiran2 910 . 2  |-  ( ( N  =  1  \/  ( N  e.  NN  /\  N  =/=  1 ) )  <->  ( N  =  1  \/  N  e.  NN ) )
6 1nn 10434 . . . . 5  |-  1  e.  NN
7 eleq1 2523 . . . . 5  |-  ( N  =  1  ->  ( N  e.  NN  <->  1  e.  NN ) )
86, 7mpbiri 233 . . . 4  |-  ( N  =  1  ->  N  e.  NN )
9 pm2.621 408 . . . 4  |-  ( ( N  =  1  ->  N  e.  NN )  ->  ( ( N  =  1  \/  N  e.  NN )  ->  N  e.  NN ) )
108, 9ax-mp 5 . . 3  |-  ( ( N  =  1  \/  N  e.  NN )  ->  N  e.  NN )
11 olc 384 . . 3  |-  ( N  e.  NN  ->  ( N  =  1  \/  N  e.  NN )
)
1210, 11impbii 188 . 2  |-  ( ( N  =  1  \/  N  e.  NN )  <-> 
N  e.  NN )
132, 5, 123bitrri 272 1  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   ` cfv 5516   1c1 9384   NNcn 10423   2c2 10472   ZZ>=cuz 10962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-recs 6932  df-rdg 6966  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-nn 10424  df-2 10481  df-n0 10681  df-z 10748  df-uz 10963
This theorem is referenced by:  indstr2  11034  dfphi2  13951  pc2dvds  14047  prmreclem3  14081  4sqlem18  14125  vdwlem13  14156  efgs1b  16337  efgredlema  16341  ablfacrplem  16671  bposlem2  22740  ostthlem1  22992  ostth  23004  subfacval3  27211  jm2.23  29483  expdioph  29510  stirlinglem12  30018  ztprmneprm  30877
  Copyright terms: Public domain W3C validator