MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnn0uz Structured version   Unicode version

Theorem elnn0uz 11108
Description: A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.)
Assertion
Ref Expression
elnn0uz  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )

Proof of Theorem elnn0uz
StepHypRef Expression
1 nn0uz 11105 . 2  |-  NN0  =  ( ZZ>= `  0 )
21eleq2i 2538 1  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    e. wcel 1762   ` cfv 5579   0cc0 9481   NN0cn0 10784   ZZ>=cuz 11071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-n0 10785  df-z 10854  df-uz 11072
This theorem is referenced by:  elfz2nn0  11757  4fvwrd4  11779  2ffzeq  11780  fzo0ss1  11812  elfzo0  11820  elfzonn0  11824  elfzom1elp1fzo  11840  injresinjlem  11882  cardfz  12036  hashfz0  12442  hashfzdm  12451  fz0hash  12452  ccat2s1fvw  12592  swrdccatin2  12662  swrdccatin12lem2  12664  swrdccatin12lem3  12665  swrdccatin12  12666  swrdccat3b  12671  cshwidxmod  12724  scshwfzeqfzo  12744  bcxmas  13599  mertenslem2  13646  bitsmod  13934  reumodprminv  14177  4sqlem19  14329  gsmsymgrfixlem1  16240  gsmsymgreqlem2  16244  efgsrel  16541  gsummptfzsplit  16736  gsummptfzsplitl  16737  pmatcollpw3fi  19046  cpmadugsumlemF  19137  wlkn0  24189  spthonepeq  24251  constr3pthlem3  24319  wwlknext  24386  clwlkisclwwlklem2a1  24441  clwwlkel  24455  wwlkext2clwwlk  24465  clwlkf1clwwlklem  24511  sseqfn  27955  sseqf  27957  risefacp1  28714  fallfacp1  28715  nn0sinds  28861  stoweidlem34  31289  subsubelfzo0  31762  altgsumbcALT  31881
  Copyright terms: Public domain W3C validator